Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 873: 162308, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801415

ABSTRACT

Boreal rivers transport and process large amounts of organic and inorganic materials derived from their catchments, yet quantitative estimates and patterns of carbon (C) transport and emissions in these large rivers are scarce relative to those of high-latitude lakes and headwater streams. Here, we present the results of a large-scale survey of 23 major rivers in northern Québec sampled during the summer period of 2010, which aimed to determine the magnitude and spatial variability of different C species (carbon dioxide - CO2, methane - CH4, total carbon - TC, dissolved organic carbon - DOC and inorganic carbon - DIC), as well as to identify their main drivers. In addition, we constructed a first order mass balance of total riverine C emissions to the atmosphere (outgassing from the main river channel) and export to the ocean over summer. All rivers were supersaturated in pCO2 and pCH4 (partial pressure of CO2 and CH4), and the resulting fluxes varied widely among rivers, especially the CH4. There was a positive relationship between DOC and gas concentrations, suggesting a common watershed source of these C species. DOC concentrations declined as a function of % land surface covered by water (lentic + lotic systems) in the watershed, suggesting that lentic systems may act as a net sink of organic matter in the landscape. The C balance suggests that the export component is higher than atmospheric C emissions in the river channel. However, for heavily dammed rivers, C emissions to the atmosphere approaches the C export component. Such studies are highly important for the overall efforts to effectively quantify and incorporate major boreal rivers into whole-landscape C budgets, to determine the net role of these ecosystems as C sinks or sources, and to predict how these might shift under anthropogenic pressures and dynamic climate conditions.

2.
Microb Ecol ; 81(1): 26-35, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32705311

ABSTRACT

Species prevalence across the landscape is related to their local abundance, which is a result of deterministic and stochastic processes that select organisms capable of recolonizing sites where they were once extinct, a process known as the rescue effect. The occupancy-frequency distribution (OFD) describes these patterns and has been extensively used to understand organism's distribution but has been poorly tested on microorganisms. In order to test OFD on freshwater bacteria, we collected data from 60 shallow lakes distributed across a wide area in southeastern Brazil, to determine the bacterial operational taxonomic units (OTUs) that were present in all sites (core) and at only one site (satellite). Then, we analyzed the spatial abundance distributions of individual OTUs to understand the influence of local abundances on regional occupancy patterns. Finally, we tested the environmental factors that influenced occupancy and abundance. We found a significant bimodal OFD for freshwater bacteria using both OTUs (97% clustering) and amplicon sequence variants (ASVs, unique sequences), with 13 core OTUs and 1169 satellite OTUs, but only three core ASVs. Core organisms had a bimodal or gamma abundance distribution. The main driver of the core community was pH, while nutrients were key when the core community was excluded and the rest of the community (mild and satellite taxa) was considered. This study demonstrates the close relationship between local environmental conditions and the abundance and dispersion of microorganisms, which shapes their distribution across the landscape.


Subject(s)
Bacteria/growth & development , Bacterial Load , Fresh Water/microbiology , Microbial Consortia/physiology , Bacteria/classification , Bacteria/genetics , Biodiversity , Brazil , Demography , Ecosystem , Geography , RNA, Ribosomal, 16S/genetics
3.
Sci Total Environ ; 630: 1381-1393, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29554758

ABSTRACT

We investigated plankton metabolism and its influence on carbon dioxide (CO2) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO2 partial pressure (pCO2) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm-2d-1) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO2, and CO2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants.

4.
Front Microbiol ; 7: 717, 2016.
Article in English | MEDLINE | ID: mdl-27242737

ABSTRACT

Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m(-2) d(-1)) and diffusive CH4 (11 ± 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.

5.
Front Microbiol ; 6: 1054, 2015.
Article in English | MEDLINE | ID: mdl-26483776

ABSTRACT

We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2-23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...