Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 103(2): 421-31, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23053696

ABSTRACT

Four new D-xylose fermenting yeast species of the clade Spathaspora were recovered from rotting-wood samples in a region of Amazonian forest, Northern Brazil. Three species produced unconjugated asci with a single elongated ascospore with curved ends. These species are described as Spathaspora brasiliensis, Spathaspora suhii and Spathaspora roraimanensis. Two isolates of an asexually reproducing species belonging to the Spathaspora clade were also obtained and they are described as Spathaspora xylofermentans. All these species are able to ferment D-xylose during aerobic batch growth in rich YP (1 % yeast extract, 2 % peptone and 2 % D-xylose) medium, albeit with differing efficiencies. The type strains are Spathaspora brasiliensis sp. nov UFMG-HMD19.3 (=CBMAI 1425=CBS 12679), Spathaspora suhii sp. nov. UFMG-XMD16.2 (=CBMAI 1426=CBS 12680), Spathaspora roraimanensis sp. nov. UFMG-XMD23.2 (CBMAI 1427=CBS 12681) and Spathaspora xylofermentans sp. nov. UFMG-HMD23.3 (=CBMAI 1428=CBS 12682).


Subject(s)
Saccharomycetales/classification , Saccharomycetales/metabolism , Wood/microbiology , Xylose/metabolism , Aerobiosis , Brazil , Cluster Analysis , Culture Media/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Genes, rRNA , Microscopy , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Saccharomycetales/cytology , Saccharomycetales/isolation & purification , Sequence Analysis, DNA , Trees
2.
PLoS One ; 7(8): e43135, 2012.
Article in English | MEDLINE | ID: mdl-22912807

ABSTRACT

BACKGROUND: This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. METHODOLOGY/PRINCIPAL FINDINGS: A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.


Subject(s)
Genetic Variation , Trees/microbiology , Xylose/metabolism , Yeasts/genetics , Yeasts/metabolism , Brazil , Cellulose/metabolism , DNA Primers/genetics , Ethanol/metabolism , Fermentation , Polymerase Chain Reaction , Species Specificity , Xylitol/biosynthesis
3.
Int J Syst Evol Microbiol ; 62(Pt 6): 1438-1440, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21856981

ABSTRACT

Five strains of a novel yeast species were isolated from rotting wood samples collected in an Amazonian forest site in the state of Roraima, northern Brazil. The sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Scheffersomyces clade and is related to Candida coipomoensis, Candida lignicola and Candida queiroziae. The novel species Candida amazonensis sp. nov. is proposed to accommodate these isolates. The type strain of C. amazonensis sp. nov. is UFMG-HMD-26.3(T) ( = CBS 12363(T) = NRRL Y-48762(T)).


Subject(s)
Candida/classification , Candida/isolation & purification , Trees/microbiology , Wood/microbiology , Brazil , Candida/genetics , DNA, Fungal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
FEMS Yeast Res ; 9(8): 1338-42, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19840117

ABSTRACT

Four strains of a new yeast species were isolated from rotting wood from two sites in an Atlantic Rain Forest and a Cerrado ecosystem in Brazil. The analysis of the sequences of the D1/D2 domains of the large-subunit rRNA gene showed that this species belongs to the Spathaspora clade. The new species ferments D-xylose efficiently and is related to Candida jeffriesii and Spathaspora passalidarum, both of which also ferment D-xylose. Similar to S. passalidarum, the new species produces unconjugated asci with a single greatly elongated ascospore with curved ends. The type strain of Spathaspora arborariae sp. nov. is UFMG-HM19.1A(T) (=CBS11463(T)=NRRL Y-48658(T)).


Subject(s)
Saccharomycetales/classification , Saccharomycetales/isolation & purification , Wood/microbiology , Xylose/metabolism , Brazil , Candida/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal, 28S/genetics , Saccharomycetales/cytology , Saccharomycetales/metabolism , Sequence Analysis, DNA , Spores, Fungal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...