Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 57: e13913, 2024.
Article in English | MEDLINE | ID: mdl-39166608

ABSTRACT

Considering the lack of consensus related to the impact of selective IL-6 receptor inhibition on bone remodeling and the scarcity of reports, especially on large bone defects, this study proposed to evaluate the biological impact of the selective inhibitor of interleukin-6 receptor (tocilizumab) in an experimental model of critical calvarial defect in rats. In this preclinical and in vivo study, 24 male Wistar rats were randomly divided into two groups (n=12/group): defect treated with collagen sponge (CG) and defect treated with collagen sponge associated with 2 mg/kg tocilizumab (TCZ). The defect in the parietal bone was created using an 8-mm diameter trephine drill. After 90 days, the animals were euthanized, and tissue samples (skull caps) were evaluated through micro-CT, histological, immunohistochemistry, cytokines, and RT-qPCR analyses. Tocilizumab reduced mononuclear inflammatory infiltration (P<0.05) and tumor necrosis factor (TNF)-α levels (P<0.01) and down-regulated tissue gene expression of BMP-2 (P<0.001), RUNX-2 (P<0.05), and interleukin (IL)-6 (P<0.05). Moreover, it promoted a stronger immunostaining of cathepsin and RANKL (P<0.05). Micro-CT and histological analyses revealed no impact on general bone formation (P>0.05). The bone cells (osteoblasts, osteoclasts, and osteocytes) in the defect area were similar in both groups (P>0.05). Tocilizumab reduced inflammatory cytokines, decreased osteogenic protein, and increased proteases in a critical bone defect in rats. Ninety days after the local application of tocilizumab in the cranial defect, we did not find a significant formation of bone tissue compared with a collagen sponge.


Subject(s)
Cytokines , Disease Models, Animal , Rats, Wistar , Receptors, Interleukin-6 , Skull , Animals , Male , Cytokines/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Skull/drug effects , Rats , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , X-Ray Microtomography , Peptide Hydrolases/metabolism , Immunohistochemistry , Random Allocation
2.
Braz. j. med. biol. res ; 57: e13913, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568972

ABSTRACT

Considering the lack of consensus related to the impact of selective IL-6 receptor inhibition on bone remodeling and the scarcity of reports, especially on large bone defects, this study proposed to evaluate the biological impact of the selective inhibitor of interleukin-6 receptor (tocilizumab) in an experimental model of critical calvarial defect in rats. In this preclinical and in vivo study, 24 male Wistar rats were randomly divided into two groups (n=12/group): defect treated with collagen sponge (CG) and defect treated with collagen sponge associated with 2 mg/kg tocilizumab (TCZ). The defect in the parietal bone was created using an 8-mm diameter trephine drill. After 90 days, the animals were euthanized, and tissue samples (skull caps) were evaluated through micro-CT, histological, immunohistochemistry, cytokines, and RT-qPCR analyses. Tocilizumab reduced mononuclear inflammatory infiltration (P<0.05) and tumor necrosis factor (TNF)-α levels (P<0.01) and down-regulated tissue gene expression of BMP-2 (P<0.001), RUNX-2 (P<0.05), and interleukin (IL)-6 (P<0.05). Moreover, it promoted a stronger immunostaining of cathepsin and RANKL (P<0.05). Micro-CT and histological analyses revealed no impact on general bone formation (P>0.05). The bone cells (osteoblasts, osteoclasts, and osteocytes) in the defect area were similar in both groups (P>0.05). Tocilizumab reduced inflammatory cytokines, decreased osteogenic protein, and increased proteases in a critical bone defect in rats. Ninety days after the local application of tocilizumab in the cranial defect, we did not find a significant formation of bone tissue compared with a collagen sponge.

SELECTION OF CITATIONS
SEARCH DETAIL