Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phycol ; 30(4): 2463-2473, 2018.
Article in English | MEDLINE | ID: mdl-30147238

ABSTRACT

Bacteriological and technical agars are in short supply with potential consequences for research, public health, and clinical labs around the world. To diagnose bottlenecks and sustainability problems that may be putting the industry at risk, we analyzed the available time series for the global landings of Gelidium, the most important raw materials for the industry. Data on the harvest of Gelidium spp. have been reported since1912, when Japan was the only producer. After World War II the diversification of harvested species and producing countries resulted in a strong increase in global landings. Maximum harvest yields of almost 60,000 t year-1 in the 1960s were sustained until the 1980s, after which landings decreased continuously to the present. In the 2010s, a reduction in the global production to about 25,000 t year-1 was observed, which was lower than the yields of the 1950s. Landings by important producers such as Japan, Korea, Spain, and Portugal have collapsed. This is the ultimate cause of the present shortage of bacteriological and technical agars. However, an important factor at play is the concentration of the global landings of Gelidium in Morocco, as its relative contribution increased from 23% in the 1960s to the present 82%. Two specific bottlenecks were identified: restrictive export quotas of unprocessed Gelidium in favor of the national agar industry and resource management regulations that were apparently not enforced resulting in over-harvesting and resource decline. The global industry may well be dependent on resource management basics. Simple harvest statistics must be gathered such as the harvest effort and the variation of harvest yields along the harvest season. We discuss how this information is fundamental to manage the resource. The available harvest statistics are generally poor and limited and vary significantly among different sources of data. Probable confusions between dry and wet weight reporting and poor discrimination of the species harvested need to be resolved.

2.
Article in English | MEDLINE | ID: mdl-26634126

ABSTRACT

BACKGROUND: Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. RESULTS: First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). CONCLUSIONS: According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...