Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Cell Stem Cell ; 24(2): 271-284.e8, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686763

ABSTRACT

Tissue development results from lineage-specific transcription factors (TFs) programming a dynamic chromatin landscape through progressive cell fate transitions. Here, we define epigenomic landscape during epidermal differentiation of human pluripotent stem cells (PSCs) and create inference networks that integrate gene expression, chromatin accessibility, and TF binding to define regulatory mechanisms during keratinocyte specification. We found two critical chromatin networks during surface ectoderm initiation and keratinocyte maturation, which are driven by TFAP2C and p63, respectively. Consistently, TFAP2C, but not p63, is sufficient to initiate surface ectoderm differentiation, and TFAP2C-initiated progenitor cells are capable of maturing into functional keratinocytes. Mechanistically, TFAP2C primes the surface ectoderm chromatin landscape and induces p63 expression and binding sites, thus allowing maturation factor p63 to positively autoregulate its own expression and close a subset of the TFAP2C-initiated surface ectoderm program. Our work provides a general framework to infer TF networks controlling chromatin transitions that will facilitate future regenerative medicine advances.


Subject(s)
Cell Lineage , Chromatin/metabolism , Epidermis/metabolism , Gene Regulatory Networks , Transcription Factor AP-2/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Cell Differentiation , Ectoderm/cytology , Epigenesis, Genetic , Feedback, Physiological , Humans , Keratinocytes/cytology , Transcriptome/genetics
2.
Nat Genet ; 50(12): 1658-1665, 2018 12.
Article in English | MEDLINE | ID: mdl-30397335

ABSTRACT

Human embryonic stem cell (hESC) differentiation promises advances in regenerative medicine1-3, yet conversion of hESCs into transplantable cells or tissues remains poorly understood. Using our keratinocyte differentiation system, we employ a multi-dimensional genomics approach to interrogate the contributions of inductive morphogens retinoic acid and bone morphogenetic protein 4 (BMP4) and the epidermal master regulator p63 (encoded by TP63)4,5 during surface ectoderm commitment. In contrast to other master regulators6-9, p63 effects major transcriptional changes only after morphogens alter chromatin accessibility, establishing an epigenetic landscape for p63 to modify. p63 distally closes chromatin accessibility and promotes accumulation of H3K27me3 (trimethylated histone H3 lysine 27). Cohesin HiChIP10 visualizations of chromosome conformation show that p63 and the morphogens contribute to dynamic long-range chromatin interactions, as illustrated by TFAP2C regulation11. Our study demonstrates the unexpected dependency of p63 on morphogenetic signaling and provides novel insights into how a master regulator can specify diverse transcriptional programs based on the chromatin landscape induced by exposure to specific morphogens.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation , Chromatin Assembly and Disassembly , Keratinocytes/physiology , Transcription Factors/physiology , Tretinoin/pharmacology , Tumor Suppressor Proteins/physiology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Chromatin/drug effects , Chromatin/metabolism , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Epidermis/drug effects , Epidermis/physiology , Gene Expression Regulation, Developmental/drug effects , Humans , Keratinocytes/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics
3.
Sci Transl Med ; 6(264): 264ra163, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25429056

ABSTRACT

Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB.


Subject(s)
Collagen Type VII/genetics , Collagen Type VII/therapeutic use , Epidermolysis Bullosa Dystrophica/therapy , Genes, Recessive , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Animals , Base Sequence , Epidermolysis Bullosa Dystrophica/genetics , Genetic Predisposition to Disease , Genetic Therapy , Genome, Human , Homologous Recombination/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Keratinocytes/pathology , Mice , Molecular Sequence Data , Mutation/genetics , Sequence Analysis, DNA
4.
Mol Ther ; 22(4): 725-33, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24390279

ABSTRACT

Definitive correction of disease causing mutations in somatic cells by homologous recombination (HR) is an attractive therapeutic approach for the treatment of genetic diseases. However, HR-based somatic gene therapy is limited by the low efficiency of gene targeting in mammalian cells and replicative senescence of primary cells ex vivo, forcing investigators to explore alternative strategies such as retro- and lentiviral gene transfer, or genome editing in induced pluripotent stem cells. Here, we report correction of mutations at the LAMA3 locus in primary keratinocytes derived from a patient affected by recessive inherited Herlitz junctional epidermolysis bullosa (H-JEB) disorder using recombinant adenoassociated virus (rAAV)-mediated HR. We identified a highly recombinogenic AAV serotype, AAV-DJ, that mediates efficient gene targeting in keratinocytes at clinically relevant frequencies with a low rate of random integration. Targeted H-JEB patient cells were selected based on restoration of adhesion phenotype, which eliminated the need for foreign sequences in repaired cells, enhancing the clinical use and safety profile of our approach. Corrected pools of primary cells assembled functional laminin-332 heterotrimer and fully reversed the blistering phenotype both in vitro and in skin grafts. The efficient targeting of the LAMA3 locus by AAV-DJ using phenotypic selection, together with the observed low frequency of off-target events, makes AAV-DJ based somatic cell targeting a promising strategy for ex vivo therapy for this severe and often lethal epithelial disorder.


Subject(s)
Epidermolysis Bullosa, Junctional/genetics , Genetic Therapy/methods , Homologous Recombination/genetics , Laminin/genetics , Animals , Collagen Type VII/genetics , Dependovirus/genetics , Epidermolysis Bullosa, Junctional/pathology , Epidermolysis Bullosa, Junctional/therapy , Heterografts , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , Mutation
5.
J Biol Chem ; 286(42): 36559-67, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21878626

ABSTRACT

The 26 S proteasomal complex, which is responsible for the bulk of protein degradation within the cell, recognizes its target substrates via covalently linked polyubiquitin moieties. However, a small but growing number of proteasomal substrates are degraded without a requirement for ubiquitinylation. One such substrate is the pyrimidine biosynthetic enzyme thymidylate synthase (EC 2.1.1.45), which catalyzes the synthesis of TMP and is the sole de novo source of TTP for DNA replication and repair. Previous work showed that intracellular proteolysis of human thymidylate synthase is directed by a degron at the polypeptide's N-terminal end, composed of an intrinsically disordered region (IDR) followed by a highly conserved amphipathic α-helix (hA). In the present report, we show that the hA helix does not function simply as an extension or scaffold for the IDR; rather, it provides a specific structural component that is necessary for degradation. Furthermore, its helical conformation is required for this function. We demonstrate that small domains from heterologous proteins can substitute for the IDR and the hA helix of human thymidylate synthase, indicating that the degradation-promoting function of these regions is not sequence-specific. The results, in general, indicate that cooperation between intrinsically disordered domains and α-helical segments is required for ubiquitin-independent degradation by the proteasome. There appears to be little sequence constraint on the ability of these regions to function as degron constituents. Rather, it is the overall conformation (or lack thereof) that is critical.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteolysis , Thymidylate Synthase/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Animals , Cell Line , Cricetinae , Cricetulus , Mice , Proteasome Endopeptidase Complex/genetics , Protein Structure, Secondary , Thymidylate Synthase/genetics , Ubiquitin/genetics
6.
Biochem J ; 432(1): 217-26, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20815815

ABSTRACT

Human thymidylate synthase (hTS; EC 2.1.1.45) is one of a small group of proteasomal substrates whose intracellular degradation occurs in a ubiquitin-independent manner. Previous studies have shown that proteolytic breakdown of the hTS polypeptide is directed by an intrinsically disordered 27-residue domain at the N-terminal end of the molecule. This domain, in co-operation with an α-helix spanning amino acids 31-45, functions as a degron, in that it has the ability to destabilize a heterologous polypeptide to which it is attached. In the present study, we provide evidence indicating that it is the 26S isoform of the proteasome that is responsible for intracellular degradation of the hTS polypeptide. In addition, we have used targeted in vitro mutagenesis to show that an Arg-Arg motif at residues 10-11 is required for proteolysis, an observation that was confirmed by functional analysis of the TS N-terminus from other mammalian species. The effects of stabilizing mutations on hTS degradation are maintained when the enzyme is provided with an alternative means of proteasome association; thus such mutations perturb one or more post-docking steps in the degradation pathway. Surprisingly, deletion mutants missing large segments of the disordered domain still function as proteasomal substrates; however, degradation of such mutants occurs by a mechanism that is distinct from that for the wild-type protein. Taken together, our results provide information on the roles of specific subregions within the intrinsically disordered N-terminal domain of hTS in regulation of degradation, leading to a deeper understanding of mechanisms underlying the ubiquitin-independent proteasomal degradation pathway.


Subject(s)
Amino Acid Motifs/genetics , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism , Amino Acid Sequence , Animals , Arginine/genetics , Arginine/metabolism , Blotting, Western , Cell Line , Dipeptides/genetics , Dipeptides/metabolism , Enzyme Stability , HCT116 Cells , Humans , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Proteasome Endopeptidase Complex/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Species Specificity , Thymidylate Synthase/chemistry , Transfection
7.
J Biol Chem ; 284(46): 31597-607, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19797058

ABSTRACT

The ubiquitin-independent proteasomal degradation pathway is increasingly being recognized as important in regulation of protein turnover in eukaryotic cells. One substrate of this pathway is the pyrimidine biosynthetic enzyme thymidylate synthase (TS; EC 2.1.1.45), which catalyzes the reductive methylation of dUMP to form dTMP and is essential for DNA replication during cell growth and proliferation. Previous work from our laboratory showed that degradation of TS is ubiquitin-independent and mediated by an intrinsically disordered 27-residue region at the N-terminal end of the molecule. In the current study we show that this region, in cooperation with an alpha-helix formed by the next 15 residues, functions as a degron, i.e. it is capable of destabilizing a heterologous protein to which it is fused. Comparative analysis of the primary sequence of TS from a number of mammalian species revealed that the N-terminal domain is hypervariable among species yet is conserved with regard to its disordered nature, its high Pro content, and the occurrence of Pro at the penultimate site. Characterization of mutant proteins showed that Pro-2 protects the N terminus against N(alpha)-acetylation, a post-translational process that inhibits TS degradation. However, although a free amino group at the N terminus is necessary, it is not sufficient for degradation of the polypeptide. The implications of these findings to the proteasome-targeting function of the N-terminal domain, particularly with regard to its intrinsic flexibility, are discussed.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Thymidylate Synthase/chemistry , Thymidylate Synthase/metabolism , Ubiquitin/metabolism , Acetylation , Amino Acid Sequence , Animals , Cells, Cultured , Cricetinae , Cricetulus , Electrophoresis, Gel, Two-Dimensional , Fibroblasts/enzymology , Humans , Immunoblotting , Lung/cytology , Lung/enzymology , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thymidylate Synthase/genetics
8.
Mem Inst Oswaldo Cruz ; 103(4): 347-50, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18660988

ABSTRACT

The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.


Subject(s)
Genes, Protozoan/genetics , Giardia lamblia/genetics , Meiosis/genetics , Animals , Crossing Over, Genetic , RNA, Messenger , Reproduction, Asexual , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
9.
Mem. Inst. Oswaldo Cruz ; 103(4): 347-350, June 2008. graf, tab
Article in English | LILACS | ID: lil-486873

ABSTRACT

The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.


Subject(s)
Animals , Genes, Protozoan/genetics , Giardia lamblia/genetics , Meiosis/genetics , Crossing Over, Genetic , Reproduction, Asexual , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...