Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(24)2023 12 13.
Article in English | MEDLINE | ID: mdl-38132146

ABSTRACT

There is growing evidence supporting the role of fibroblasts in all stages of atherosclerosis, from the initial phase to fibrous cap and plaque formation. In the arterial wall, as with macrophages and vascular smooth muscle cells, fibroblasts are exposed to a myriad of LDL lipids, including the lipid species formed during the oxidation of their polyunsaturated fatty acids of cholesteryl esters (PUFA-CEs). Recently, our group identified the final oxidation products of the PUFA-CEs, cholesteryl hemiesters (ChE), in tissues from cardiovascular disease patients. Cholesteryl hemiazelate (ChA), the most prevalent lipid of this family, is sufficient to impact lysosome function in macrophages and vascular smooth muscle cells, with consequences for their homeostasis. Here, we show that the lysosomal compartment of ChA-treated fibroblasts also becomes dysfunctional. Indeed, fibroblasts exposed to ChA exhibited a perinuclear accumulation of enlarged lysosomes full of neutral lipids. However, this outcome did not trigger de novo lysosome biogenesis, and only the lysosomal transcription factor E3 (TFE3) was slightly transcriptionally upregulated. As a consequence, autophagy was inhibited, probably via mTORC1 activation, culminating in fibroblasts' apoptosis. Our findings suggest that the impairment of lysosome function and autophagy and the induction of apoptosis in fibroblasts may represent an additional mechanism by which ChA can contribute to the progression of atherosclerosis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Mice , Animals , Cholesterol Esters , Lysosomes/physiology , Fatty Acids , Fibroblasts
2.
J Steroid Biochem Mol Biol ; 225: 106194, 2023 01.
Article in English | MEDLINE | ID: mdl-36162631

ABSTRACT

Alzheimer´s disease (AD) is an intellectual disorder caused by organic brain damage and cerebral atrophy, characterized by the loss of memory, judgment, and abstract thinking followed by declining cognitive functions, language, and the ability to perform daily living activities. Many efforts have been made to decrease the effects of the disease but also to block the neurodegenerative process. Cholinesterase inhibitors (ChEIs) are a group of medicines that act at the neurotransmission of acetylcholine, preventing its excessive breakdown and helping to improve cognitive functions in patients with AD. In this work, 16 chiral steroids, namely ring-fused 3ß-acetoxyandrost-5-ene derivatives, their precursor and two 16-dehydroprogesterone-derived dioximes, were assessed as cholinesterase inhibitors and neuroprotective agents. The results demonstrated that some of the tested steroids are cholinesterase inhibitors and the majority selective for acetylcholinesterase inhibition. Albeit, one ring-fused 3ß-acetoxyandrost-5-ene containing N-methylpiperidine ring (compound 2g) demonstrated to be a selective and potent inhibitor of the butyrylcholinesterase enzyme. (S)- 4,4a,5,6,7,8-(hexahydronaphthalen-2-one)-fused 3ß-acetoxyandrost-5-ene (compound 6) showed high neuroprotective effect, high ability to restore the mitochondrial membrane potential from glutamate intoxication, and dramatic improvement in cell morphology. The described results provided relevant structure-activity relationship data.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Acetylcholinesterase/metabolism , Acetylcholinesterase/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/therapeutic use , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Structure-Activity Relationship , Androstanes/chemistry , Androstanes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...