Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 7(1): 7894, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801668

ABSTRACT

Autophagy is stimulated by exercise in several tissues; yet the role of skeletal and cardiac muscle-specific autophagy on the benefits of exercise training remains incompletely understood. Here, we determined the metabolic impact of exercise training in obese mice with cardiac and skeletal muscle disruption of the Autophagy related 7 gene (Atg7h&mKO). Muscle autophagy deficiency did not affect glucose clearance and exercise capacity in lean adult mice. High-fat diet in sedentary mice led to endoplasmic reticulum stress and aberrant mitochondrial protein expression in autophagy-deficient skeletal and cardiac muscles. Endurance exercise training partially reversed these abnormalities in skeletal muscle, but aggravated those in the heart also causing cardiac fibrosis, foetal gene reprogramming, and impaired mitochondrial biogenesis. Interestingly, exercise-trained Atg7h&mKO mice were better protected against obesity and insulin resistance with increased circulating fibroblast growth factor 21 (FGF21), elevated Fgf21 mRNA and protein solely in the heart, and upregulation of FGF21-target genes involved in thermogenesis and fatty acid oxidation in brown fat. These results indicate that autophagy is essential for the protective effects of exercise in the heart. However, the atypical remodelling elicited by exercise in the autophagy deficient cardiac muscle enhances whole-body metabolism, at least partially, via a heart-brown fat cross-talk involving FGF21.


Subject(s)
Autophagy-Related Protein 7/deficiency , Autophagy , Energy Metabolism , Muscle, Skeletal/pathology , Myocardium/pathology , Physical Conditioning, Animal , Ventricular Remodeling , Animals , Diet, High-Fat , Endoplasmic Reticulum Stress , Glucose/metabolism , Insulin Resistance , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity , Organelle Biogenesis
2.
Front Physiol ; 7: 461, 2016.
Article in English | MEDLINE | ID: mdl-27790154

ABSTRACT

The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.

3.
Front Physiol ; 7: 265, 2016.
Article in English | MEDLINE | ID: mdl-27445854

ABSTRACT

Resistance training is one of the most common kind of exercise used nowadays. Long-term high-intensity resistance training are associated with deleterious effects on vascular adjustments. On the other hand, is unclear whether low-intensity resistance training (LI-RT) is able to induce systemic changes in vascular tone. Thus, we aimed to evaluate the effects of chronic LI-RT on endothelial nitric oxide (NO) bioavailability of mesenteric artery and cardiovascular autonomic modulation in healthy rats. Wistar animals were divided into two groups: exercised (Ex) and sedentary (SED) rats submitted to the resistance (40% of 1RM) or fictitious training for 8 weeks, respectively. After LI-RT, hemodynamic measurements and cardiovascular autonomic modulation by spectral analysis were evaluated. Vascular reactivity, NO production and protein expression of endothelial and neuronal nitric oxide synthase isoforms (eNOS and nNOS, respectively) were evaluated in mesenteric artery. In addition, cardiac superoxide anion production and ventricle morphological changes were also assessed. In vivo measurements revealed a reduction in mean arterial pressure and heart rate after 8 weeks of LI-RT. In vitro studies showed an increased acetylcholine (ACh)-induced vasorelaxation and greater NOS dependence in Ex than SED rats. Hence, decreased phenylephrine-induced vasoconstriction was found in Ex rats. Accordingly, LI-RT increased the NO bioavailability under basal and ACh stimulation conditions, associated with upregulation of eNOS and nNOS protein expression in mesenteric artery. Regarding autonomic control, LI-RT increased spontaneous baroreflex sensitivity, which was associated to reduction in both, cardiac and vascular sympathetic modulation. No changes in cardiac superoxide anion or left ventricle morphometric parameters after LI-RT were observed. In summary, these results suggest that RT promotes beneficial vascular adjustments favoring augmented endothelial NO bioavailability and reduction of sympathetic vascular modulation, without evidence of cardiac overload.

SELECTION OF CITATIONS
SEARCH DETAIL
...