Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(2-1): 024135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491614

ABSTRACT

In this work, multilayer films consisting of two strong-anisotropic ferromagnetic layers antiferromagnetically coupled by a nonmagnetic spacer are studied by Monte Carlo simulations. The system is modeled by an Ising-based Hamiltonian that depends on both the intralayer exchange and dipolar constants and on the interlayer exchange constant (IEC). The ground state of the monolayers (null IEC) corresponds to alternate stripe domains with width h defined by the ratio between the exchange and dipolar constants (δ). The results show that IEC alters the energy balance that controls the stripe domain formation, leading to a ground state characterized by in-plane stripes out-plane antiferromagnetically coupled. When temperature increases two regimes are identified: an IEC-dominated regime where the orientational and positional orders are simultaneously lost in both layers, driving the system to the tetragonal liquid (TL) phase, and a dipolar-dominated one where signs of layers decoupling and the onset of positional disorder are observed. The last could be related with an intermediate nematic phase (NM). From the study of the nonequilibrium dynamics, the phase transitions to TL phase are characterized as continuous and those to the NM one as Kosterlitz-Thouless type. Also, for both layers the critical temperatures are the same and increase with IEC magnitude. Furthermore, the obtained critical exponents depend on the IEC values, which is indicative of a weak universality. For the dipolar-dominated regime, the decoupling between layers is also evidenced by the difference between their critical exponents.

2.
Heliyon ; 5(1): e01170, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30775570

ABSTRACT

We present a numerical study of the magnetic properties of ZnFe2O4 using Monte-Carlo simulations performed considering a Heisenberg model with antiferromagnetic couplings determined by Density Functional Theory. Our calculations predict that the magnetic susceptibility has a cusp-like peak centered at 13 K, and follows a Curie-Weiss behavior above this temperature with a high and negative Curie-Weiss temperature ( Θ C W = - 170 K). These results agree with the experimental data once extrinsic contributions that give rise to the deviation from a Curie-Weiss law are discounted. Additionally, we discuss the spin configuration of ZnFe2O4 below its ordering temperature, where the system presents a high degeneracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...