Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anesthesiology ; 135(4): 633-648, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34270686

ABSTRACT

BACKGROUND: Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. METHODS: Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin-dependent protein kinase 2α-positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg-1 · min-1 for 45 min, eight rats; high dose: 4.5 µg · kg-1 · min-1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg-1 · min-1 for 30 min, seven rats; high dose: 4 mg · kg-1 · min-1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. RESULTS: Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide - saline] during dexmedetomidine infusion = -6.06 [99% CI = -12.36 to -1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [-1.93, -0.87] dB, 99% CI = [-4.16 to -0.56, -1.62 to -0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [-20.06 to 14.14, -20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: -3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). CONCLUSIONS: These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic's molecular target.


Subject(s)
Delta Rhythm/drug effects , Dexmedetomidine/pharmacology , Glutamic Acid , Ketamine/pharmacology , Neurons/drug effects , Parabrachial Nucleus/drug effects , Anesthesia/methods , Anesthetics, Dissociative/pharmacology , Animals , Calcium-Binding Proteins/physiology , Delta Rhythm/physiology , Glutamic Acid/physiology , Hypnotics and Sedatives/pharmacology , Male , Neurons/physiology , Parabrachial Nucleus/physiology , Rats , Rats, Sprague-Dawley
2.
Front Pharmacol ; 12: 668285, 2021.
Article in English | MEDLINE | ID: mdl-34084141

ABSTRACT

D-amphetamine induces emergence from sevoflurane and propofol anesthesia in rats. Dexmedetomidine is an α2-adrenoreceptor agonist that is commonly used for procedural sedation, whereas ketamine is an anesthetic that acts primarily by inhibiting NMDA-type glutamate receptors. These drugs have different molecular mechanisms of action from propofol and volatile anesthetics that enhance inhibitory neurotransmission mediated by GABAA receptors. In this study, we tested the hypothesis that d-amphetamine accelerates recovery of consciousness after dexmedetomidine and ketamine. Sixteen rats (Eight males, eight females) were used in a randomized, blinded, crossover experimental design and all drugs were administered intravenously. Six additional rats with pre-implanted electrodes in the prefrontal cortex (PFC) were used to analyze changes in neurophysiology. After dexmedetomidine, d-amphetamine dramatically decreased mean time to emergence compared to saline (saline:112.8 ± 37.2 min; d-amphetamine:1.8 ± 0.6 min, p < 0.0001). This arousal effect was abolished by pre-administration of the D1/D5 dopamine receptor antagonist, SCH-23390. After ketamine, d-amphetamine did not significantly accelerate time to emergence compared to saline (saline:19.7 ± 18.0 min; d-amphetamine:20.3 ± 16.5 min, p = 1.00). Prefrontal cortex local field potential recordings revealed that d-amphetamine broadly decreased spectral power at frequencies <25 Hz and restored an awake-like pattern after dexmedetomidine. However, d-amphetamine did not produce significant spectral changes after ketamine. The duration of unconsciousness was significantly longer in females for both dexmedetomidine and ketamine. In conclusion, d-amphetamine rapidly restores consciousness following dexmedetomidine, but not ketamine. Dexmedetomidine reversal by d-amphetamine is inhibited by SCH-23390, suggesting that the arousal effect is mediated by D1 and/or D5 receptors. These findings suggest that d-amphetamine may be clinically useful as a reversal agent for dexmedetomidine.

3.
Anesth Analg ; 132(5): 1254-1264, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33857967

ABSTRACT

General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.


Subject(s)
Anesthesia, General , Anesthetics, General/adverse effects , Brain Waves/drug effects , Brain/drug effects , Consciousness/drug effects , Sleep , Anesthesia Recovery Period , Anesthesia, General/adverse effects , Animals , Brain/physiology , Brain Mapping , Electroencephalography , Humans , Neural Pathways/drug effects , Neural Pathways/physiology , Terminology as Topic
4.
Anesthesiology ; 133(1): 19-30, 2020 07.
Article in English | MEDLINE | ID: mdl-32349073

ABSTRACT

The neural circuits underlying the distinct endpoints that define general anesthesia remain incompletely understood. It is becoming increasingly evident, however, that distinct pathways in the brain that mediate arousal and pain are involved in various endpoints of general anesthesia. To critically evaluate this growing body of literature, familiarity with modern tools and techniques used to study neural circuits is essential. This Readers' Toolbox article describes four such techniques: (1) electrical stimulation, (2) local pharmacology, (3) optogenetics, and (4) chemogenetics. Each technique is explained, including the advantages, disadvantages, and other issues that must be considered when interpreting experimental results. Examples are provided of studies that probe mechanisms of anesthesia using each technique. This information will aid researchers and clinicians alike in interpreting the literature and in evaluating the utility of these techniques in their own research programs.


Subject(s)
Anesthesia, General , Anesthesiology , Anesthetics/pharmacology , Neural Pathways/drug effects , Animals , Electric Stimulation , Humans , Optogenetics , Research
5.
Hippocampus ; 29(9): 773-786, 2019 09.
Article in English | MEDLINE | ID: mdl-30417958

ABSTRACT

Sharp wave-ripples (140-220 Hz) are patterns of brain activity observed in the local field potential of the hippocampus which are present during memory consolidation. As rodents switch from memory consolidation to memory encoding behaviors, cholinergic inputs to the hippocampus from neurons in the medial septum-diagonal band of Broca cause a marked reduction in ripple incidence. The mechanism for this disruption in ripple power is not fully understood. In isolated neurons, the major effect of cholinergic input on hippocampal neurons is depolarization of the membrane potential, which affects both hippocampal pyramidal neurons and inhibitory interneurons. Using an existing model of ripple-frequency oscillations that includes both pyramidal neurons and interneurons, we investigated the mechanism whereby depolarizing inputs to these neurons can affect ripple power and frequency. We observed that ripple power and frequency are maintained, as long as inputs to pyramidal neurons and interneurons are balanced. Preferential drive to pyramidal neurons or interneurons, however, affects ripple power and can disrupt ripple oscillations by pushing ripple frequency higher or lower. Thus, an imbalance in drive to pyramidal neurons and interneurons provides a means whereby cholinergic input can suppress hippocampal ripples.


Subject(s)
Hippocampus/physiology , Neural Inhibition/physiology , Parasympathetic Nervous System/physiology , Algorithms , Electroencephalography , Electrophysiological Phenomena/physiology , Evoked Potentials , Humans , Interneurons/physiology , Membrane Potentials/physiology , Memory Consolidation/physiology , Models, Neurological , Neurons/physiology , Pyramidal Cells/physiology
6.
Neuroscience ; 341: 52-60, 2017 01 26.
Article in English | MEDLINE | ID: mdl-27840231

ABSTRACT

We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition.


Subject(s)
Attention , Diffusion Tensor Imaging , Executive Function , Intelligence , Prefrontal Cortex/diagnostic imaging , White Matter/diagnostic imaging , Adult , Cognition , Humans , Intelligence Tests , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neuropsychological Tests , Regression Analysis , Young Adult
7.
Hippocampus ; 26(12): 1525-1541, 2016 12.
Article in English | MEDLINE | ID: mdl-27588894

ABSTRACT

Hippocampal network oscillations are important for learning and memory. Theta rhythms are involved in attention, navigation, and memory encoding, whereas sharp wave-ripple complexes are involved in memory consolidation. Cholinergic neurons in the medial septum-diagonal band of Broca (MS-DB) influence both types of hippocampal oscillations, promoting theta rhythms and suppressing sharp wave-ripples. They also receive frequency-dependent hyperpolarizing feedback from hippocamposeptal connections, potentially affecting their role as neuromodulators in the septohippocampal circuit. However, little is known about how the integration properties of cholinergic MS-DB neurons change with hyperpolarization. By potentially altering firing behavior in cholinergic neurons, hyperpolarizing feedback from the hippocampal neurons may, in turn, change hippocampal network activity. To study changes in membrane integration properties in cholinergic neurons in response to hyperpolarizing inputs, we used whole-cell patch-clamp recordings targeting genetically labeled, choline acetyltransferase-positive neurons in mouse brain slices. Hyperpolarization of cholinergic MS-DB neurons resulted in a long-lasting decrease in spike firing rate and input-output gain. Additionally, voltage-clamp measures implicated a slowly inactivating, 4-AP-insensitive, outward K+ conductance. Using a conductance-based model of cholinergic MS-DB neurons, we show that the ability of this conductance to modulate firing rate and gain depends on the expression of an experimentally verified shallow intrinsic spike frequency-voltage relationship. Together, these findings point to a means through which negative feedback from hippocampal neurons can influence the role of cholinergic MS-DB neurons. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cholinergic Neurons/physiology , Diagonal Band of Broca/physiology , Membrane Potentials/physiology , Septum of Brain/physiology , Animals , Cations, Monovalent/metabolism , Cholinergic Neurons/drug effects , Computer Simulation , Diagonal Band of Broca/drug effects , Membrane Potentials/drug effects , Mice, 129 Strain , Mice, Transgenic , Models, Neurological , Patch-Clamp Techniques , Potassium/metabolism , Septum of Brain/drug effects , Tissue Culture Techniques
8.
Cortex ; 71: 264-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26277547

ABSTRACT

INTRODUCTION: The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). METHODS: After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging (DTI) methods for examining tracts between adjacent gray matter (GM) regions. RESULTS: Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p < .0001; right: p < .0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho = -.633, p = .006) and total score (rho = -.520, p = .032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho = -.644, p = .005), total score (rho = -.535, p = .027) in SANS, hallucinations (rho = -.551, p = .018), delusions (rho = -.632, p = .005) and total score (rho = -.721, p = .001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. CONCLUSIONS: The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia.


Subject(s)
Frontal Lobe/pathology , Schizophrenia/pathology , Schizophrenic Psychology , White Matter/pathology , Adolescent , Adult , Affect , Age of Onset , Anhedonia , Anisotropy , Antipsychotic Agents/therapeutic use , Delusions/etiology , Delusions/psychology , Diffusion Tensor Imaging , Female , Gray Matter/pathology , Gyrus Cinguli/pathology , Hallucinations/etiology , Hallucinations/psychology , Humans , Male , Predictive Value of Tests , Psychiatric Status Rating Scales , Schizophrenia/drug therapy , Social Behavior , Young Adult
9.
Schizophr Res ; 157(1-3): 190-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24962436

ABSTRACT

INTRODUCTION: The medial orbitofrontal cortex (mOFC) and rostral part of the anterior cingulate cortex (rACC) are brain regions that are important in the neural network involving emotional processing and decision making, as well as playing an important role in social behavior and interaction. Considering the schizophrenia dysconnectivity hypothesis, observed abnormalities in emotional response and social behavior in schizophrenia might be associated with connectivity abnormalities between mOFC and rACC. METHODS: Twenty-seven patients with chronic schizophrenia and 26 healthy controls were examined using diffusion tensor imaging (DTI). White matter properties in bilateral mOFC-rACC connections were examined using stochastic tractography, which has been shown to be among the most effective DTI methods for examining tracts between adjacent gray matter regions. RESULTS: Reductions in fractional anisotropy (FA) were observed in left anterior mOFC-rACC connections (p<0.0001), and bilateral posterior mOFC-rACC connections (left: p<0.0001; right: p<0.0001) in patients compared to controls. In addition, reduced FA in left posterior mOFC-rACC connections was associated with more severe anhedonia-asociality (R=-0.396, p=0.041) and avolition-apathy (R=-0.426, p=0.027) using the Scale for the Assessment of Negative Symptoms. DISCUSSION: White matter abnormalities within connections between mOFC and rACC are associated with more severe anhedonia-asociality and avolition-apathy, which suggest that these brain regions may be important in understanding abnormal emotional responses and social behavior in patients with schizophrenia.


Subject(s)
Gyrus Cinguli/pathology , Prefrontal Cortex/pathology , Schizophrenia/pathology , White Matter/pathology , Adult , Anhedonia , Anisotropy , Chronic Disease , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Functional Laterality , Gray Matter/pathology , Humans , Male , Nerve Fibers, Myelinated/pathology , Neural Pathways/pathology , Psychiatric Status Rating Scales , Schizophrenia/drug therapy
10.
BMC Biophys ; 5: 5, 2012 Mar 24.
Article in English | MEDLINE | ID: mdl-22444827

ABSTRACT

BACKGROUND: The mechanism of action of volatile general anesthetics has not yet been resolved. In order to identify the effects of isoflurane on the membrane, we measured the steady-state anisotropy of two fluorescent probes that reside at different depths. Incorporation of anesthetic was confirmed by shifting of the main phase transition temperature. RESULTS: In liquid crystalline dipalmitoylphosphatidylcholine liposomes, isoflurane (7-25 mM in the bath) increases trimethylammonium-diphenylhexatriene fluorescence anisotropy by ~0.02 units and decreases diphenylhexatriene anisotropy by the same amount. CONCLUSIONS: The anisotropy data suggest that isoflurane decreases non-axial dye mobility in the headgroup region, while increasing it in the tail region. We propose that these results reflect changes in the lateral pressure profile of the membrane.

11.
Psychiatry Res ; 193(2): 65-70, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21684124

ABSTRACT

Voxel-based morphometry (VBM) is a hypothesis-free, whole-brain, voxel-by-voxel analytic method that attempts to compare imaging data between populations. Schizophrenia studies have utilized this method to localize differences in diffusion tensor imaging (DTI) derived fractional anisotropy (FA), a measure of white matter integrity, between patients and healthy controls. The number of publications has grown, although it is unclear how reliable and reproducible this method is, given the subtle white matter abnormalities expected in schizophrenia. Here we analyze and combine results from 23 studies published to date that use VBM to study schizophrenia in order to evaluate the reproducibility of this method in DTI analysis. Coordinates of each region reported in DTI VBM studies published thus far in schizophrenia were plotted onto a Montreal Neurological Institute atlas, and their anatomical locations were recorded. Results indicated that the reductions of FA in patients with schizophrenia were scattered across the brain. Moreover, even the most consistently reported regions were reported independently in less than 35% of the articles studied. Other instances of reduced FA were replicated at an even lower rate. Our findings demonstrate striking inconsistency, with none of the regions reported in much more than a third of the published articles. This poor replication rate suggests that the application of VBM to DTI data may not be the optimal way for finding the subtle microstructural abnormalities suggested in schizophrenia.


Subject(s)
Brain Mapping , Brain/pathology , Nerve Fibers, Myelinated/pathology , Schizophrenia/pathology , Anisotropy , Databases, Factual/statistics & numerical data , Diffusion Tensor Imaging , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...