Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 16(3): 310-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14669066

ABSTRACT

Web-based clinical-image viewing is commonplace in large medical centers. As demands for product and performance escalate, physicians, sold on the concept of "any image, anytime, anywhere," fret when image studies cannot be viewed in a time frame to which they are accustomed. Image delivery pathways in large medical centers are oftentimes complicated by multiple networks, multiple picture archiving and communication systems (PACS), and multiple groups responsible for image acquisition and delivery to multiple destinations. When studies are delayed, it may be difficult to rapidly pinpoint bottlenecks. Described here are the tools used to monitor likely failure points in our modality to clinical-image-viewing chain and tools for reporting volume and throughput trends. Though perhaps unique to our environment, we believe that tools of this type are essential for understanding and monitoring image-study flow, re-configuring resources to achieve better throughput, and planning for anticipated growth. Without such tools, quality clinical-image delivery may not be what it should.


Subject(s)
Efficiency, Organizational , Information Storage and Retrieval , Internet , Radiology Information Systems , Data Display , Humans
2.
J Digit Imaging ; 15 Suppl 1: 144-50, 2002.
Article in English | MEDLINE | ID: mdl-12105716

ABSTRACT

We have developed a centralized application for acquiring images from multiple picture archiving and communication systems (PACS) and distributing images to a clinical image web server and other repositories. Our flexible strategy addresses a number of administrative challenges associated with delivering images into clinical, research, and test environments. DICOM images flow from PACSs and modalities to a UNIX-based "distributor" application, which relays them to one or more destinations. Image volume and transmission times were collected and analyzed. Three distributors receive an average of 34 gigabytes of image data per day. Images are sent concurrently to two web-based image servers, one used clinically by physicians and one used for testing. Transmission of certain classes of studies is prioritized for key physician groups. Delivery to research systems is also supported. Acquiring images from multi-vendor PACS for distribution to a web server for clinical image viewing is a challenging task. Centralizing the acquisition and distribution process reduces both the administrative effort and the impact on clinical operations associated with maintaining dynamic clinical, testing, and research environments.


Subject(s)
Computer Communication Networks , Computer Systems , Radiology Information Systems , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...