Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mutagenesis ; 31(1): 51-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26297740

ABSTRACT

Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential.


Subject(s)
DNA Damage , Hepatocytes/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Salvia officinalis , Thymus Plant , Animals , Antioxidants/pharmacology , Comet Assay , Drinking Water , Female , Gene Expression , Glutathione/analysis , Glutathione/drug effects , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/genetics , Male , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/drug effects , Superoxide Dismutase/genetics
2.
J Photochem Photobiol B ; 154: 77-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26700424

ABSTRACT

Five 2,6-substituted 4-anilinoquinazolines were evaluated for their ability to generate superoxide radical anion and singlet oxygen upon UVA irradiation and to induce cytotoxic/phototoxic effects on cancer cell lines L1210, HeLa and HT-29. The formation of radical intermediates, especially reactive oxygen species, upon UVA photoexcitation of the studied derivatives was monitored by indirect techniques of EPR spectroscopy. For all 4-anilinoquinazolines the photoinduced generation of superoxide radical anion was evidenced using spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide, and the presence of (1)O2 was detected by the oxidation of 4-hydroxy-2,2,6,6-tetramethylpiperidine to the paramagnetic species 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl. The confirmed photoinduced activation of molecular oxygen via both Type I and Type II photooxidation mechanisms indicates potential phototoxic responses in cells. Biological results showed that derivatives I-V initiated different cytotoxic/phototoxic effects dependent on their concentration, time of treatment and the character of the cell line. UVA irradiation increased the cytotoxic activity of all tested 4-anilinoquinazoline derivatives. The highest cytotoxicity/phototoxicity on all tested cancer cells was induced by N,2-diphenyl-quinazolin-4-amine (derivative III). This most effective derivative emerged as the potent photosensitizer, which possesses a significant antiproliferative activity and DNA damage in L1210 cells increased by UVA irradiation. In addition derivative III induced programmed cell death in leukemia cells through mitochondrial/caspase 9/caspase 3-dependent pathway.


Subject(s)
Apoptosis/drug effects , Photosensitizing Agents/pharmacology , Quinazolines/pharmacology , Ultraviolet Rays , Animals , Apoptosis/radiation effects , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Comet Assay , DNA Damage/drug effects , DNA Damage/radiation effects , Electron Spin Resonance Spectroscopy , HT29 Cells , HeLa Cells , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects , Oxidation-Reduction , Photosensitizing Agents/chemistry , Quinazolines/chemistry , Singlet Oxygen/metabolism , Superoxides/metabolism
3.
J Agric Food Chem ; 62(28): 6632-9, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24955655

ABSTRACT

Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.


Subject(s)
Antioxidants/analysis , Chelating Agents/analysis , DNA Damage/drug effects , Oils, Volatile/chemistry , Plant Oils/chemistry , Rosmarinus/chemistry , Camphanes/pharmacology , Cyclohexanols/pharmacology , Cymenes , Eucalyptol , Eugenol/pharmacology , Hep G2 Cells , Humans , Hydrogen Peroxide/pharmacology , Monoterpenes/pharmacology , Plasmids/genetics , Thymol/pharmacology
4.
Interdiscip Toxicol ; 7(3): 146-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-26109892

ABSTRACT

Salvia officinalis, L. (Lamiaceae) is one of the most widespread herbal species used in the area of human health and in the food-processing industry. Salvia and its extracts are known to be a rich source of antioxidants. As shown previously, the crude ethanolic extract of salvia (SE) exerts lower anti-oxidative properties in lard compared to the new salvia food formulations No. 1 (SF1; 32% of SE + 68% of the emulsifier Dimodan S-T) and No. 2 (SF2; 32% of SE + 68% of the emulsifier Topcithin 50). The aim of the present study was to investigate and compare the effects of the SE and its food formulations SF1 and SF2 on the toxicity and/or proliferation of L1210 leukemia cells. We found that SE and both SF1 and SF2 demonstrated different concentration- and time-dependent cytotoxic/antiproliferative cellular effects already within the first 24 h of the treatment. However, SE was nearly 10 times more effective than the new salvia food formulations SF1 and SF2. We investigated partially also the molecular mechanisms lying behind the action of SE, SF1 and SF2 induced apoptosis in our cell model. We found an apparent involvement of the mitochondrial/caspase-dependent pathway in the described processes. Nevertheless, further investigation is needed before salvia extract and its new antioxidant formulations can be included among the potential food antioxidants with protective properties against cancer.

5.
Interdiscip Toxicol ; 7(4): 189-94, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26109899

ABSTRACT

Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods - flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in cell death.

6.
Mutat Res ; 757(1): 15-22, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23867853

ABSTRACT

This paper presents comparisons of biological impacts of the oxidants H2O2 and t-BHP on human liver cells, and shows modulation of these effects by the phenolic compound carvacrol. To understand better how these oxidants exert their effect on DNA and on the activity of the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), we measured intracellular antioxidant glutathione (iGSH) and intracellular reactive oxidative species (iROS). DNA lesions corresponded to single-strand DNA breaks, alkali-labile lesions and formamido-pyrimidine-DNA-glycosylase (FPG)-sensitive sites. Pre-treatment of cells with carvacrol substantially decreased the number of H2O2-induced DNA lesions, but the number of t-BHP-induced DNA lesions was not reduced. Activities of both SOD and GPx were stimulated significantly by carvacrol and were reduced by the combined effect of carvacrol and oxidants. H2O2 and t-BHP alone influenced the level of antioxidant enzymes differently. While H2O2 did not markedly change the activity of SOD or GPx, lower concentrations of t-BHP stimulated activity of SOD and mainly GPx. The level of iROS was increased by both oxidants and decreased by carvacrol applied either alone or with oxidants. The level of iGSH was not influenced in any of the treatments tested. Our results show that although both oxidants induced oxidative stress and damaged cellular DNA, their influences on other molecular processes were different. The protective effect of carvacrol against DNA-damaging effects of H2O2 was unambiguous, but reduction by carvacrol of the DNA-damaging effect of t-BHP was not observed. These results suggest that the phenolic compound carvacrol contributes to the defence mechanisms of the human organism, but these beneficial effects are dependent on the origin and source of the actual oxidative stress.


Subject(s)
Hydrogen Peroxide/toxicity , Monoterpenes/pharmacology , Oxidative Stress , tert-Butylhydroperoxide/toxicity , Cymenes , DNA Breaks, Single-Stranded/drug effects , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hep G2 Cells/drug effects , Humans , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...