Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 35(5): 782-791, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35417138

ABSTRACT

Tobacco-specific nitrosamine (TSNA) formation occurred during aerosol generation from select commercial cig-a-like e-cigarette products. To understand the drivers behind the potential formation of TSNAs in electronic cigarette (e-cigarette) aerosols and e-liquids, model e-liquid systems were generated in the lab to demonstrate that nitrite can react with nicotine and minor alkaloids to form TSNAs in e-liquids. In the presence of nitrite and nicotine, TSNA levels in e-liquids increased over time and the process was accelerated by elevated temperature. Additionally, TSNAs formed during aerosol generation when nitrite was present in the corresponding e-liquids. The commercial e-cigarette products that showed higher levels and formation of TSNAs were observed to contain nitrite and minor alkaloid impurities in the corresponding e-liquids. This study provides valuable information about drivers for TSNA formation in e-liquids and e-cigarette aerosols that may be applied to the evaluation and quality assurance of e-cigarette products.


Subject(s)
Alkaloids , Electronic Nicotine Delivery Systems , Nitrosamines , Aerosols , Nicotine , Nitrites , Nicotiana
2.
Front Chem ; 9: 742854, 2021.
Article in English | MEDLINE | ID: mdl-34660534

ABSTRACT

The Premarket Tobacco Product Applications (PMTA) guidance issued by the Food and Drug Administration for electronic nicotine delivery systems (ENDSs) recommends that in addition to reporting harmful and potentially harmful constituents (HPHCs), manufacturers should evaluate these products for other chemicals that could form during use and over time. Although e-vapor product aerosols are considerably less complex than mainstream smoke from cigarettes and heated tobacco product (HTP) aerosols, there are challenges with performing a comprehensive chemical characterization. Some of these challenges include the complexity of the e-liquid chemical compositions, the variety of flavors used, and the aerosol collection efficiency of volatile and semi-volatile compounds generated from aerosols. In this study, a non-targeted analysis method was developed using gas chromatography-mass spectrometry (GC-MS) that allows evaluation of volatile and semi-volatile compounds in e-liquids and aerosols of e-vapor products. The method employed an automated data analysis workflow using Agilent MassHunter Unknowns Analysis software for mass spectral deconvolution, peak detection, and library searching and reporting. The automated process ensured data integrity and consistency of compound identification with >99% of known compounds being identified using an in-house custom mass spectral library. The custom library was created to aid in compound identifications and includes over 1,100 unique mass spectral entries, of which 600 have been confirmed from reference standard comparisons. The method validation included accuracy, precision, repeatability, limit of detection (LOD), and selectivity. The validation also demonstrated that this semi-quantitative method provides estimated concentrations with an accuracy ranging between 0.5- and 2.0-fold as compared to the actual values. The LOD threshold of 0.7 ppm was established based on instrument sensitivity and accuracy of the compounds identified. To demonstrate the application of this method, we share results from the comprehensive chemical profile of e-liquids and aerosols collected from a marketed e-vapor product. Applying the data processing workflow developed here, 46 compounds were detected in the e-liquid formulation and 55 compounds in the aerosol sample. More than 50% of compounds reported have been confirmed with reference standards. The profiling approach described in this publication is applicable to evaluating volatile and semi-volatile compounds in e-vapor products.

3.
ACS Omega ; 5(28): 17565-17575, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715241

ABSTRACT

Exposure to diacetyl (DA) has been linked to the respiratory condition bronchiolitis obliterans. Previous research has demonstrated that DA and other α-dicarbonyl compounds can be detected in both the e-liquids and aerosols of e-vapor products (EVPs). While some EVP manufacturers may add these compounds as flavor ingredients, the primary objective of this work was to determine the potential for the formation of α-dicarbonyl compounds during the generation of aerosols from EVPs where no DA or other α-dicarbonyl compounds are added to the e-liquid. A novel ultraperformance liquid chromatography-mass spectrometry-based analytical method for the determination of DA, acetyl propionyl, glyoxal, and methylglyoxal was developed and validated. Next, eight commercially available cig-a-like-type EVPs were evaluated for α-dicarbonyl formation. Increased levels of α-dicarbonyls were observed in the aerosols of all evaluated EVPs compared to their respective e-liquids. Mechanistic studies were conducted using a model microwave reaction system to identify key reaction precursors for DA generated from propylene glycol (PG) and carbon-13-labeled glycerin (GLY). These studies, along with the corresponding retrosynthetic analysis, resulted in the proposed formation pathway where hydroxyacetone is generated from PG and/or GLY. Hydroxyacetone then participates in an aldol condensation with formaldehyde where formaldehyde can also be generated from PG and/or GLY; the resultant product then dehydrates to form DA. This proposed pathway was further investigated through in situ synthetic organic experiments within the model microwave reaction system. This work establishes that DA is formed in the aerosol generation process of the EVPs tested though at levels below toxicological concern.

4.
Regul Toxicol Pharmacol ; 95: 153-160, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29567331

ABSTRACT

U.S. FDA draft guidance recommends reporting quantities of designated harmful and potentially harmful constituents (HPHCs) in e-cigarette e-liquids and aerosols. The HPHC list comprises potential matrix-related compounds, flavors, nicotine, tobacco-related impurities, leachables, thermal degradation products, and combustion-related compounds. E-cigarettes contain trace levels of many of these constituents due to tobacco-derived nicotine and thermal degradation. However, combustion-related HPHCs are not likely to be found due to the relatively low operating temperatures of most e-cigarettes. The purpose of this work was to use highly sensitive, selective, and validated analytical methods to determine if these combustion-related HPHCs (three aromatic amines, five volatile organic compounds, and the polycyclic aromatic hydrocarbon benzo[a]pyrene) are detectable in commercial refill e-liquids, reference e-cigarette e-liquids, and aerosols generated from rechargeable e-cigarettes with disposable cartridges (often referred to as "cig-a-likes"). In addition, the transfer efficiency of these constituents from e-liquid to aerosol was evaluated when these HPHCs were added to the e-liquids prior to aerosol formation. This work demonstrates that combustion-related HPHCs are not present at measurable levels in the commercial and reference e-liquids or e-cigarette aerosols tested. Additionally, when combustion-related HPHCs are added to the e-liquids, they transfer to the aerosol with transfer efficiencies ranging from 49% to 99%.


Subject(s)
Benzo(a)pyrene/analysis , Electronic Nicotine Delivery Systems , Hazardous Substances/analysis , Volatile Organic Compounds/analysis , Aerosols
5.
J Chromatogr Sci ; 55(7): 677-682, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28444188

ABSTRACT

The USA Food and Drug Administration (FDA) established benzo[a]pyrene (B[a]P) as a harmful and potentially harmful constituent (HPHC) found in tobacco products. Tobacco manufacturers are required to report HPHC quantities to the FDA; however, there is currently no standardized method for determination of B[a]P in smokeless tobacco products (STPs). This work details a sensitive, selective and rapid method for the determination of B[a]P in STPs, cigarette filler and tobacco. Tobacco is extracted using methanol followed by solid-phase extraction and concentration prior to analysis by gas chromatography/mass spectrometry in the selected ion monitoring mode. Cooperation Centre for Scientific Research Relative to Tobacco reference products and 3R4F Kentucky reference cigarette filler were used for method validation. All method validation requirements were met including linearity, accuracy, precision, robustness, limit of detection (LOD) and limit of quantitation (LOQ), and stability. Calibration range of 0.5-125 ng mL-1 was achieved with the coefficient of determination (R2) greater than 0.995. The method LOQ and LOD were 0.729 and 0.216 ng/g, respectively. Using standardized methods for the measurement of HPHCs in tobacco products will reduce variability and ensure accurate data for regulatory reporting.


Subject(s)
Benzo(a)pyrene/analysis , Gas Chromatography-Mass Spectrometry/methods , Tobacco, Smokeless/analysis , Limit of Detection , Linear Models , Reproducibility of Results , Tobacco, Smokeless/standards
6.
Int J Environ Res Public Health ; 12(4): 3439-52, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25811768

ABSTRACT

BACKGROUND: Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. METHODS: Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. RESULTS: Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. CONCLUSIONS: NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotiana/chemistry , Nicotine/analysis , Plant Extracts/analysis , Acetaldehyde/analysis , Formaldehyde/analysis , Nitrates/analysis , Nitrosamines/analysis , Phenols/analysis , Nicotiana/toxicity
7.
J Med Chem ; 49(5): 1781-91, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509593

ABSTRACT

In a previous study, we identified (-)-N-[(1R,4S,5S,7R)-5-(3-hydroxyphenyl)-4-methyl-2-(3-phenylpropyl)-2-azabicyclo[3.3.1]non-7-yl]-3-(1-piperidinyl)propanamide (5a, KAA-1) as the first potent and selective kappa opioid receptor antagonist from the 5-(3-hydroxyphenyl)morphan class of opioids. In this study we report an improved synthesis of this class of compounds. The new synthetic method was used to prepare analogues 5b-r where the morphan N-substituent and 7alpha-amido group were varied. Most of the analogues showed sub-nanomolar potency for the kappa opioid receptor and were highly selective relative to the mu and delta opioid receptors. (-)-3-(3,4-Dihydroisoquinolin-2(1H)-yl)-N-{(1R,4S,5S,7R)-5-(3-hydroxyphenyl)-4-methyl-2-[2-(2-methylphenyl)ethyl]-2-azabicyclo[3.3.1]non-7-yl}propanamide (5n, MTHQ) is at least as potent and selective as nor-BNI as a kappa opioid receptor antagonist in the [35S]GTP-gamma-S in vitro functional test.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CHO Cells , Cricetinae , Cricetulus , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Radioligand Assay , Structure-Activity Relationship
8.
Org Lett ; 5(2): 113-6, 2003 Jan 23.
Article in English | MEDLINE | ID: mdl-12529118

ABSTRACT

[reaction: see text] Zinc(II) and copper(II) complexes of prodigiosin (1) have been characterized. All N-atoms of 1 bind Cu(II) to generate 5: the complex exhibits regiospecific oxidation of the C-pyrrole. In contrast, coordination by Zn(II) to 1 produces Zn(1)(2) (8), a 4-coordinate tetrahedral complex. The influence of these binding geometries on Cu-mediated double-strand (ds) DNA cleavage by 1 is discussed.


Subject(s)
Anti-Bacterial Agents/chemistry , Copper/chemistry , DNA/drug effects , Prodigiosin/chemistry , Zinc/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA/metabolism , Hydrolysis/drug effects , Molecular Structure , Prodigiosin/pharmacology , Structure-Activity Relationship
9.
Chem Res Toxicol ; 15(5): 734-41, 2002 May.
Article in English | MEDLINE | ID: mdl-12018996

ABSTRACT

Prodigiosin (Prod, 1) is the parent member of a class of polypyrrole natural products that exhibit promising immunosuppressive and anticancer activities. They are known to act as H+/Cl- symporters possibly through electrostatic binding to Cl- that facilitates proton-coupled transmembrane transport of halides. This activity has been ascribed to their promotion of apoptosis by acidification of the intracellular pH (pHi). Since the protonated pyrromethene chromophore of Prod (1) is expected to play a critical role in pHi regulation, and the A-pyrrole ring is known to be important for anticancer activity, we prepared several Prod analogues with various A-ring systems to determine their proton affinity in 1:1 (v/v) acetonitrile (MeCN)/H(2)O and anticancer properties against HL-60 cancer cells. Our studies show that the A-ring strongly influences the proton affinity of the pyrromethene entity. Replacement of the C-2 methoxy group in 2,4-dimethoxy-pyrromethene 3 (apparent pK(a) = 4.95) with the A-pyrrole ring to generate the Prod analogue 5 raised the apparent pK(a) to 7.54 (increase by 2.59 pK units) and caused a 76 nm red shift in the UV-vis absorbance of the protonated species (AH+). The A-pyrrole NH atom plays an important role in stabilization of AH+, as its replacement with O or S atoms decreases the apparent pK(a) by 0.79 and 1.07 pK units, respectively. A 4-substituted phenyl series of Prod analogues 8-14 exhibited a linear correlation with the Hammett sigma(p) values. Within the phenyl series, two Prod analogues were found to inhibit colony formation of HL-60 cancer cells, although the inhibition did not correlate with the proton affinity of the pyrromethene entity. The implications of these findings with regard to the anticancer activities of the prodigiosins are discussed.


Subject(s)
Antineoplastic Agents/chemical synthesis , Prodigiosin/analogs & derivatives , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , DNA Fragmentation , HL-60 Cells/drug effects , Humans , Prodigiosin/chemistry , Structure-Activity Relationship
10.
Chem Res Toxicol ; 15(5): 742-8, 2002 May.
Article in English | MEDLINE | ID: mdl-12018997

ABSTRACT

Prodigiosin (Prod, 1) is the parent member of a class of polypyrrole natural products that exhibit promising immunosuppressive and cytotoxic activity. They can facilitate copper-promoted oxidative double-strand (ds) DNA cleavage through reductive activation of Cu(II). This is triggered by oxidation of the electron-rich Prod molecule and may provide a basis for the cytotoxicity of the prodigiosins. To gain an understanding of this activity, we prepared several Prod analogues with various A-ring systems to examine their electrochemical properties in acetonitrile (MeCN) as a means to establish a basis for structure-reactivity relationships in copper-promoted nuclease activity. The intact bipyrrole (BP) chromophore is critical for the copper-mediated nuclease properties of the Prods. In fact, simple BP systems are shown to facilitate oxidative single-strand (ss) DNA cleavage. Replacement of the Prod A-pyrrole ring with alternative arenes (phenyl, furan-2-yl, or thiophen-2-yl) inhibits DNA strand scission and raises the half-peak oxidation potential (E(p/2)) of the Prod free base [E(p/2) = 0.44 V vs saturated calomel electrode (SCE) in MeCN] by ca. 200 mV. The same effect was achieved through attachment of an electron-withdrawing group (acetyl) at the 5'-position of the A-pyrrole ring. The structural modifications that inhibit DNA cleavage correlate with known structure-reactivity relationships of Prods against leukemia and melanoma cancer cells. The implications of our findings with regard to the cytotoxicity of the Prods are discussed.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Prodigiosin/analogs & derivatives , Pyrroles/chemical synthesis , Anti-Bacterial Agents/chemistry , Copper/pharmacology , Electrochemistry , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/drug effects , Oxidation-Reduction , Prodigiosin/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
11.
J Org Chem ; 64(18): 6861-6869, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-11674696

ABSTRACT

The 4-methoxypyrrolic natural products contain a common 4-methoxy-2,2'-bipyrrole chromophore and exhibit promising anticancer, antimicrobial, and immunosuppressive activities. Herein, the ability of two representative members, tambjamine E (1) and prodigiosin (2), to bind calf thymus DNA (CT-DNA), polyd[G-C](2), and polyd[A-T](2) has been characterized using absorption and fluorescence spectroscopy. Scatchard plots showed that 1 occupies a site size (n) of ca. three base pairs and possesses affinity constants (K) ranging from 1 to 0.1 x 10(5) M(-)(1). Prodigiosin (2) binds DNA by mixed modes, as isobestic points were not evident in titration experiments. The neutral aldehyde precursor 4 was found to possess no measurable DNA binding affinity, indicating that the enamine structure of 1 and the pyrromethene of 2 are essential elements for DNA binding affinity. The enamine of 1 was found to undergo hydrolysis to 4 with a half-life (t(1/2)) of 14.5 h at pH 7.4 and 37.5 degrees C. For the B-ring nitrogen atom of 1, a pK(a) value of 10.06 was also established. From fluorescence spectroscopy it was found that 1, 2, and 4 possess weak emission spectra in water that is increased in nonaqueous solvents. For 1 and 2, DNA binding also increased the emission yield. Energy-transfer measurements suggested an intercalative binding mode, with preference for AT sites. The ability of distamycin to displace 1 and 2 from the helix also suggested that they intercalate from the minor-groove. This specificity differs from other unfused aromatic cations that bind by a minor-groove mode at AT sequences and intercalate at GC sites. Reasons for the specificity displayed by 1 and 2, as well as the implications of our findings to their biological properties are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...