Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Front Public Health ; 12: 1372327, 2024.
Article in English | MEDLINE | ID: mdl-38689773

ABSTRACT

Background: Human brucellosis is a neglected disease transmitted to humans from animals such as cattle, goats, dogs, and swine. The causative agents are bacteria of the genus Brucella, intracellular pathogens usually confined to the reproductive organs of their animal hosts causing sterility and abortions. The objective of the study was to determine the seroprevalence of brucellosis among women with spontaneous abortions (SAW) and compare this seroprevalence with that of healthy pregnant women (HPW). Methods: The case-control study was designed to determine the seroprevalence and molecular detection of brucellosis in women who suffered from spontaneous abortion and healthy pregnant women of the Haripur District of Pakistan. A total of 770 blood samples (n = 385 for each group) were collected from 9 public and 11 private hospitals in Haripur District from December 2021-March 2023. Data on demographic features, epidemiological variables, and risk factors were collected from each participant by structured questionnaires. Initial screening for brucellosis was performed by Rose Bengal Plate Test followed by qRT-PCR for molecular detection of the genus-specific BCSP-31 gene of Brucella. Results: The study showed that anti-Brucella antibodies were more found in SAW 23.63% (91/385) than in HPW 1.29% (5/385). Brucella specific DNA was amplified in 89.01% (81/91) seropositive samples of SAW. Demographic features and risk factors such as age, urbanicity, socioeconomic status, education, occupation, and animal contact were found significantly associated with brucellosis (p ≤ 0.05). Consumption of unpasteurized raw milk (OR = 18.28, 95%CI: 8.16-40.94) was found highly concomitant with seroprevalence. Conclusion: This study reports the first evidence of involvement of brucellosis in spontaneous abortions in women of Pakistan. The study can be used to develop strategies for risk management during pregnancy, to raise awareness for brucellosis, and develop control programs.


Subject(s)
Abortion, Spontaneous , Brucella , Brucellosis , Humans , Female , Pakistan/epidemiology , Seroepidemiologic Studies , Brucellosis/epidemiology , Adult , Case-Control Studies , Pregnancy , Abortion, Spontaneous/microbiology , Abortion, Spontaneous/epidemiology , Brucella/isolation & purification , Risk Factors , Young Adult , Adolescent , Animals
2.
Sci Rep ; 13(1): 16586, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789135

ABSTRACT

Human brucellosis cases are rare in non-endemic countries, such as Germany, where infections are predominantly caused by Brucella melitensis. The German National Reference Laboratory for Bovine, Porcine, Ovine and Caprine Brucellosis received a suspected Brucella sp. isolate from a patient for identification. Bacteriological tests and PCR-based diagnostics showed the isolate to be B. suis, but did not yield cohesive results regarding the biovar. Whole genome sequencing and subsequent genotyping was employed for a detailed characterization of the isolate and elucidating the reason for failure of the diagnostic PCR to correctly identify the biovar. The isolate was found to be B. suis bv. 5, a rare biovar with limited geographical distribution primarily found in the Northern Caucasus. Due to a deletion in one of the target regions of the diagnostic PCR, the isolate could not be correctly typed. Based on in silico genotyping it could be excluded that the isolate was identical to one of the B. suis bv. 5 reference strains. Here, we report a rare case of a B. suis bv. 5 field isolate. Furthermore, by reporting this finding, we want to make practitioners aware of possible misinterpretation of PCR results, as it cannot be excluded that the detected deletion is common among the B. suis bv. 5 community, as there is currently a lack of field isolates.


Subject(s)
Brucella melitensis , Brucella suis , Brucellosis , Animals , Humans , Cattle , Sheep , Swine , Brucella suis/genetics , Goats , Brucellosis/diagnosis , Brucellosis/veterinary , Brucella melitensis/genetics , Genotype , Sheep, Domestic
3.
Front Vet Sci ; 10: 1233118, 2023.
Article in English | MEDLINE | ID: mdl-37601758

ABSTRACT

In 2021, a case of canine brucellosis diagnosed in a dog with orchitis was presented to a veterinary practice in Germany. Serological testing excluded Brucella (B.) canis as a causative agent, but molecular analysis revealed the presence of B. suis biovar 1. Since biovar 1 is not endemic in Europe and the dog had no history of travel to endemic areas, a comprehensive epidemiological investigation was conducted using whole genome sequence data to determine the source of infection. We describe the clinical progress of the animal and the potential infection of a veterinary clinic employee. The findings highlight the importance of considering less common Brucella species as possible causes of canine brucellosis. The data also emphasize that it is quite challenging to identify Brucella species in a routine diagnostic laboratory and to conduct epidemiological investigations to unveil possible transmission routes.

4.
Emerg Microbes Infect ; 12(2): 2249126, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649455

ABSTRACT

The zoonotic bacteria, Brucella canis, is becoming the leading cause of canine brucellosis in Europe. In dogs, it causes reproductive problems as well as non-specific lameness or discospondilitis. In humans, B. canis can be origin of chronic debilitating conditions characteristic to its genus such as undulant fever, splenomegaly, and lymphadenopathy. Although B. canis shows some pathogenic characteristics similar to B. abortus and B. melitensis, it lacks surface O-polysaccharide, like nonzoonotic B. ovis. This review shows that host-B. canis interactions are still poorly understood, with many knowledge and capability gaps, causing relatively poor sensitivity and specificity of existing diagnostic tools. Currently, there is no vaccine for this rough Brucella species. Besides, antimicrobial therapy does not guarantee bacterial elimination, and infection relapses are frequently reported, increasing the risks of antibiotic resistance development. B. canis has been detected in dogs in almost all European countries which increased human exposure, but currently there is no systematic surveillance. Moreover, B. canis caused brucellosis is not included in Animal Health Law, and therefore there is no legal framework to tackle this emerging infectious disease. To map out the diagnostic strategies, identify risks for human infections and propose management scheme for infected pet and kennel dogs, we present current understanding of canine B. canis caused brucellosis, outline major knowledge gaps and propose future steps. To address and highlight challenges veterinary and public health services encounter in Europe, we developed two B. canis infection scenarios: of a single household pet and of a kennel dog in larger group.


Subject(s)
Brucella canis , Brucellosis , Dog Diseases , Animals , Dogs , Humans , Sheep , Brucella canis/genetics , Public Health , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dog Diseases/microbiology , Brucellosis/diagnosis , Brucellosis/epidemiology , Brucellosis/veterinary , Europe/epidemiology
5.
BMC Infect Dis ; 23(1): 529, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580676

ABSTRACT

BACKGROUND: Brucellosis is a zoonotic disease whose causative agent, Brucella spp., is endemic in many countries of the Mediterranean basin, including Greece. Although the occurrence of brucellosis must be reported to the authorities, it is believed that the disease is under-reported in Greece, and knowledge about the genomic diversity of brucellae is lacking. METHODS: Thus, 44 Brucella isolates, primarily B. melitensis, collected between 1999 and 2009 from humans and small ruminants in Greece were subjected to whole genome sequencing using short-read technology. The raw reads and assembled genomes were used for in silico genotyping based on single nucleotide substitutions and alleles. Further, specific genomic regions encoding putative virulence genes were screened for characteristic nucleotide changes, which arose in different genotype lineages. RESULTS: In silico genotyping revealed that the isolates belonged to three of the known sublineages of the East Mediterranean genotype. In addition, a novel subgenotype was identified that was basal to the other East Mediterranean sublineages, comprising two Greek strains. The majority of the isolates can be assumed to be of endemic origin, as they were clustered with strains from the Western Balkans or Turkey, whereas one strain of human origin could be associated with travel to another endemic region, e.g. Portugal. Further, nucleotide substitutions in the housekeeping gene rpoB and virulence-associated genes were detected, which were characteristic of the different subgenotypes. One of the isolates originating from an aborted bovine foetus was identified as B. abortus vaccine strain RB51. CONCLUSION: The results demonstrate the existence of several distinct persistent Brucella sp. foci in Greece. To detect these and for tracing infection chains, extensive sampling initiatives are required.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Animals , Cattle , Brucella melitensis/genetics , Greece/epidemiology , Multilocus Sequence Typing , Phylogeny , Brucellosis/epidemiology , Brucellosis/veterinary , Genotype , Whole Genome Sequencing
6.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37395662

ABSTRACT

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Subject(s)
Brucella , Ochrobactrum , Ochrobactrum/classification , Ochrobactrum/genetics , Ochrobactrum/pathogenicity , Ochrobactrum/physiology , Brucella/classification , Brucella/genetics , Brucella/pathogenicity , Brucella/physiology , Terminology as Topic , Phylogeny , Brucellosis/drug therapy , Brucellosis/microbiology , Humans , Opportunistic Infections/microbiology
7.
Pathogens ; 12(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37375471

ABSTRACT

Three species of white-toothed shrews of the order Eulipotyphla are present in central Europe: the bicolored (Crocidura leucodon), greater (Crocidura russula) and lesser (Crocidura suaveolens) white-toothed shrews. Their precise distribution in Germany is ill-defined and little is known about them as reservoirs for zoonotic pathogens (Leptospira spp., Coxiella burnetii, Brucella spp., Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis and Bartonella spp.). We investigated 372 Crocidura spp. from Germany (n = 341), Austria (n = 18), Luxembourg (n = 2) and Slovakia (n = 11). West European hedgehogs (Erinaceus europaeus) were added to compare the presence of pathogens in co-occurring insectivores. Crocidura russula were distributed mainly in western and C. suaveolens mainly in north-eastern Germany. Crocidura leucodon occurred in overlapping ranges with the other shrews. Leptospira spp. DNA was detected in 28/227 C. russula and 2/78 C. leucodon samples. Further characterization revealed that Leptospira kirschneri had a sequence type (ST) 100. Neoehrlichia mikurensis DNA was detected in spleen tissue from 2/213 C. russula samples. Hedgehogs carried DNA from L. kirschneri (ST 100), L. interrogans (ST 24), A. phagocytophilum and two Bartonella species. This study improves the knowledge of the current distribution of Crocidura shrews and identifies C. russula as carrier of Leptospira kirschneri. However, shrews seem to play little-to-no role in the circulation of the arthropod-borne pathogens investigated.

8.
BMC Genomics ; 24(1): 258, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173617

ABSTRACT

BACKGROUND: Bacterial epidemiology needs to understand the spread and dissemination of strains in a One Health context. This is important for highly pathogenic bacteria such as Bacillus anthracis, Brucella species, and Francisella tularensis. Whole genome sequencing (WGS) has paved the way for genetic marker detection and high-resolution genotyping. While such tasks are established for Illumina short-read sequencing, Oxford Nanopore Technology (ONT) long-read sequencing has yet to be evaluated for such highly pathogenic bacteria with little genomic variations between strains. In this study, three independent sequencing runs were performed using Illumina, ONT flow cell version 9.4.1, and 10.4 for six strains of each of Ba. anthracis, Br. suis and F. tularensis. Data from ONT sequencing alone, Illumina sequencing alone and two hybrid assembly approaches were compared. RESULTS: As previously shown, ONT produces ultra-long reads, while Illumina produces short reads with higher sequencing accuracy. Flow cell version 10.4 improved sequencing accuracy over version 9.4.1. The correct (sub-)species were inferred from all tested technologies, individually. Moreover, the sets of genetic markers for virulence, were almost identical for the respective species. The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis. Assemblies based on nanopore data alone, Illumina data alone, and both hybrid assemblies correctly detected canonical (sub-)clades for Ba. anthracis and F. tularensis as well as multilocus sequence types for Br. suis. For F. tularensis, high-resolution genotyping using core-genome MLST (cgMLST) and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods. However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions. CONCLUSIONS: In summary, combining data from ONT and Illumina for high-resolution genotyping might be feasible for F. tularensis and Ba. anthracis, but not yet for Br. suis. The ongoing improvement of nanopore technology and subsequent data analysis may facilitate high-resolution genotyping for all bacteria with highly stable genomes in future.


Subject(s)
Bacillus anthracis , Brucella suis , Francisella tularensis , Nanopores , Francisella tularensis/genetics , Brucella suis/genetics , Bacillus anthracis/genetics , Multilocus Sequence Typing , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
9.
Vet Microbiol ; 277: 109637, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586209

ABSTRACT

In the current study, 14 Brucella suis biovar 2 (B. suis bv 2) strains isolated from slaughter pigs in Cairo were sequenced using Illumina technology to investigate genetic diversity, antimicrobial resistance (AMR) genes, and virulence-associated determinants. These strains were the first B. suis bv 2 isolates from Egypt. To place them in a global context, 92 genomes of B. suis were retrieved from the NCBI database and used for comparison. The in-silico analysis of MLST showed that all isolates have ST16. No resistome but 43 virulomes have been found without differences in distribution. The cgMLST classified the Egyptian B. suis strains into a complex type (CT) encompassing four distinct cgMLST sequence types. The closest relatives were strain B. suis 94/11 of an unknown origin and a Danish strain. Whole-genome sequencing analysis proved low diversity of Egyptian B. suis isolates; thus, a single introduction event is assumed. Investigation of a large number of B. suis isolates from different governorates is required to tailor control measures to avoid further spread.


Subject(s)
Brucella suis , Brucellosis , Swine Diseases , Swine , Animals , Brucella suis/genetics , Sus scrofa , Egypt/epidemiology , Brucellosis/epidemiology , Brucellosis/veterinary , Multilocus Sequence Typing/veterinary , Virulence Factors , Genetic Variation , Swine Diseases/epidemiology
10.
Infect Dis Poverty ; 11(1): 120, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36482466

ABSTRACT

BACKGROUND: Brucellosis, a zoonosis mainly transmitted by consumption of unpasteurized dairy products as well as direct contact with infected animals, is endemic in Kyrgyzstan. However, Brucella species in humans have not been investigated and the origin of the disease remains poorly known in wide parts of Сentral Asia. Thus, molecular characterization of the circulating strains is a critical first step in understanding Brucella diversity in the country. METHODS: In this study, isolates were collected from patients with suspected brucellosis from different regions in Kyrgyzstan between 2019 and 2020. The detection and identification of Brucella was carried out by Bruce-ladder PCR. Next generation sequencing was used to sequence the 89 Brucella isolates, which were genotyped by cgSNP and cgMLST to identify epidemiological connection between Brucella isolates as well as placing them in the context of the global Brucella phylogeny. RESULTS: The Brucella strains isolated from all regions of Kyrgyzstan were identified as B. melitensis. Based on cgSNP analysis, 18 sequence types were differentiated. The highest numbers of different sequence types were found in Batken (n = 8), Osh (n = 8) and Jalal-Abad (n = 6) oblasts. According to cgSNP and cgMLST analyses, different B. melitensis lineages circulate in Kyrgyzstan, all of them belonging to the Eastern Mediterranean group of the global Brucella phylogeny with the highest similarity to strains from Turkmenistan, Iran and Turkey. CONCLUSION: In the present study, B. melitensis was identified as a causative agent of human brucellosis in Kyrgyzstan and different lineages could be identified. Since this study focused on isolates of human origin, the identity of Brucella species and lineages circulating among animal populations remains elusive. Implementing culture techniques and use of most recent molecular, bioinformatic and epidemiological tools are needed to set up a One Health approach to combat brucellosis in Kyrgyzstan. Further, other Сentral Asian countries need to take part in this effort as brucellosis is a transboundary disease in these regions.


Subject(s)
Brucella melitensis , Humans , Brucella melitensis/genetics , Kyrgyzstan/epidemiology , Asia , Computational Biology , Iran
11.
Transbound Emerg Dis ; 69(6): 3952-3963, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36383491

ABSTRACT

Brucellosis is one of the most common neglected zoonotic diseases globally, with a public health significance and a high economic loss in the livestock industry caused by the bacteria of the genus Brucella. In this study, 136 Egyptian Brucella melitensis strains isolated from animals and humans between 2001 and 2020 were analysed by examining the whole-core-genome single-nucleotide polymorphism (cgSNP) in comparison to the in silico multilocus variable number of tandem repeat analysis (MLVA-16). Almost all Egyptian isolates were belonging to the West Mediterranean clade, except two isolates from buffalo and camel were belonging to the American and East Mediterranean clades, respectively. A significant correlation between the human case of brucellosis and the possible source of infection from animals was found. It seems that several outbreak strains already existing for many years have been spread over long distances and between many governorates. The cgSNP analysis, in combination with epidemiological metadata, allows a better differentiation than the MLVA-16 genotyping method and, hence, the source definition and tracking of outbreak strains. The MLVA based on the currently used 16 markers is not suitable for this task. Our results revealed 99 different cgSNP genotypes with many different outbreak strains, both older and widely distributed ones and rather newly introduced ones as well. This indicates several different incidents and sources of infections, probably by imported animals from other countries to Egypt. Comparing our panel of isolates to public databases by cgSNP analysis, the results revealed near relatives from Italy. Moreover, near relatives from the United States, France, Austria and India were found by in silico MLVA.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Animals , Brucella melitensis/genetics , Egypt/epidemiology , Polymorphism, Single Nucleotide , Multilocus Sequence Typing/veterinary , Brucellosis/epidemiology , Brucellosis/veterinary , Genotype , Minisatellite Repeats/genetics , Genetic Variation
12.
Microorganisms ; 10(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36296246

ABSTRACT

Brucellosis is an important bacterial zoonosis of domestic and wildlife species. This disease has a significant public health concern and is characterized by reproductive failure resulting in economic losses in the livestock industry. Among thirteen known species, B. abortus, B. melitensis, B. suis, and B. canis are human pathogens. Brucellosis has been extensively investigated in humans and domestic animals. However, the situation in wildlife is still not completely reported and studied. Therefore, a systematic literature search and screening were done to clarify the situation of brucellosis in wildlife in Europe. Sixty-five articles from a total of 13,424 reports published between 1991 and 2021 were selected, applying defined inclusion criteria. Wild boars and brown hares were the most often studied terrestrial wildlife species, whereas seals and porpoises were the most often investigated marine wildlife. Poland, Croatia, and Belgium showed the highest seroprevalences of wild boars caused by B. suis biovar 2. In marine wildlife, brucellosis was mainly caused by B. ceti and B. pinnipedialis. Most samples were from carcasses. Thus, sera could not be collected. It is worrisome that B.abortus and B. melitensis were reported from both terrestrial and marine wild animals, posing a zoonotic threat to people exposed to wild animals. Currently, there is no approved vaccine available for wild animals. The main challenges are the development of specific diagnostics and their validation for use in wildlife.

13.
Microorganisms ; 10(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35889012

ABSTRACT

Brucellosis is a globally reemerging and neglected zoonosis causing serious public health problems as well as considerable economic losses due to infection of livestock. Although the epidemiology of brucellosis has been well studied and its various aspects in humans and animals are well understood, it is still one of the most challenging health problems in many developing countries such as Kyrgyzstan. This review describes epidemiological characteristics of brucellosis in humans and animals, its impact on animal production and the role of implemented infection control measures in Kyrgyzstan. Particularly, introduction of mass vaccination in small ruminants evidently contributed to control of brucellosis in Kyrgyzstan, reducing the number of infections in animals as well as humans.

14.
Microorganisms ; 10(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889189

ABSTRACT

Brucellosis, mainly caused by Brucella (B.) melitensis, is associated with a risk of chronification and relapses. Antimicrobial susceptibility testing (AST) standards for B. melitensis are not available, and the agent is not yet listed in the EUCAST breakpoint tables. CLSI recommendations for B. melitensis exist, but they do not fulfill the requirements of the ISO 20776 standard regarding the culture medium and the incubation conditions. Under the third EU Health Programme, laboratories specializing in the diagnostics of highly pathogenic bacteria in their respective countries formed a working group within a Joint Action aiming to develop a suitable method for the AST of B. melitensis. Under the supervision of EUCAST representatives, this working group adapted the CLSI M45 document to the ISO 20776 standard after testing and validation. These adaptations included the comparison of various culture media, culture conditions and AST methods. A Standard Operation Procedure was derived and an interlaboratory validation was performed in order to evaluate the method. The results showed pros and cons for both of the two methods but also indicate that it is not necessary to abandon Mueller-Hinton without additives for the AST of B. melitensis.

15.
J Clin Microbiol ; 60(8): e0031122, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35852343

ABSTRACT

Brucellosis poses a significant burden to human and animal health worldwide. Robust and harmonized molecular epidemiological approaches and population studies that include routine disease screening are needed to efficiently track the origin and spread of Brucella strains. Core genome multilocus sequence typing (cgMLST) is a powerful genotyping system commonly used to delineate pathogen transmission routes for disease surveillance and control. Except for Brucella melitensis, cgMLST schemes for Brucella species are currently not established. Here, we describe a novel cgMLST scheme that covers multiple Brucella species. We first determined the phylogenetic breadth of the genus using 612 Brucella genomes. We selected 1,764 genes that were particularly well conserved and typeable in at least 98% of these genomes. We tested the new scheme on 600 genomes and found high agreement with the whole-genome-based single nucleotide polymorphism (SNP) analysis. Next, we applied the scheme to reanalyze the genome of Brucella strains from epidemiologically linked outbreaks. We demonstrated the applicability of the new scheme for high-resolution typing required in outbreak investigations as previously reported with whole-genome SNP methods. We also used the novel scheme to define the global population structure of the genus using 1,322 Brucella genomes. Finally, we demonstrated the possibility of tracing distribution of Brucella strains by performing cluster analysis of cgMLST profiles and found nearly identical cgMLST profiles in different countries. Our results show that sequencing depth of more than 40-fold is optimal for allele calling with this scheme. In summary, this study describes a novel Brucella-wide cgMLST scheme that is applicable in Brucella molecular epidemiology and helps in accurately tracking and thus controlling the sources of infection. The scheme is publicly accessible and should represent a valuable resource for laboratories with limited computational resources and bioinformatics expertise.


Subject(s)
Brucella melitensis , Genome, Bacterial , Animals , Brucella melitensis/genetics , Genome, Bacterial/genetics , Humans , Molecular Epidemiology/methods , Multilocus Sequence Typing/methods , Phylogeny
16.
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35682807

ABSTRACT

Brucellae are Gram-negative, aerobic, non-motile coccobacilli causing brucellosis in man and animals. The disease is one of the most significant yet neglected global zoonoses. Especially in developing countries, brucellosis is causing public health problems and economic losses to private animal owners and national revenues. Composed of oligonucleotides, aptamers are chemical analogues of antibodies that are promising components for developing aptamer-based rapid, sensitive, and specific tests to identify the Brucella group of bacteria. For this purpose, aptamers were generated and selected by an enhanced protocol of cell systematic evolution of ligands by exponential enrichment (cell-SELEX). This enhanced cell-SELEX procedure involved the combination of both conventional and toggle cell-SELEX to boost the specificity and binding affinity to whole Brucella cells. This procedure, combined with high-throughput sequencing of the resulting aptamer pools, comprehensive bioinformatics analysis, and wet lab validation assays, led to the selection of a highly sensitive and specific aptamer for those Brucella species known to circulate in Egypt. The isolated candidate aptamer showed dissociation constant (KD) values of 43.5 ± 11, 61.5 ± 8, and 56 ± 10.8 nM for B. melitensis, B. abortus, and B. suis, respectively. This is the first development of a Brucella-specific aptamer using an enhanced combination of conventional and toggle cell-SELEX to the authors' best knowledge.


Subject(s)
Aptamers, Nucleotide , Brucella , Brucellosis , Aptamers, Nucleotide/metabolism , Brucella/genetics , Brucella/metabolism , Humans , Ligands , SELEX Aptamer Technique/methods
17.
BMC Vet Res ; 18(1): 224, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698071

ABSTRACT

BACKGROUND: Brucella suis is a zoonotic pathogen with a serious impact on public health and the pig industry worldwide. Information regarding B. suis in pigs in Egypt is scarce. This study aimed to investigate the prevalence of B. suis in slaughtered domestic pigs at El-Basatin abattoir in Cairo, Egypt. A total of 1,116 domestic pigs slaughtered in 2020 were sampled for Brucella isolation and identification. Identified Brucella isolates were molecularly confirmed at species, and biovar levels using Bruce ladder PCR and Suis ladder multiplex PCR. Additionally, high-risk practices of 16 abattoir workers (4 veterinarians, 10 butchering and evisceration workers, and 2 scalding workers) were investigated using a pre-piloted structured questionnaire. RESULTS: Brucella isolates were recovered from 1.3% of examined pigs (n = 14) at consistently low rates (1.1-2.9%) across the year of sampling from February to December 2020. All isolates were confirmed as B. suis biovar (bv) 2. Remarkably, 92.9% (13/14) of isolates showed atypical ability to produce H2S and hence were considered as B. suis bv2 atypical phenotype. The prevalence was higher in males (1.8%) than in females (0.9). However, this difference was not significant (Odds ratio = 1.9; CI 95% 0.7 - 5.7; P = 0.2). No detectable pathological lesions were associated with B. suis bv2 infection in examined pigs. All strains were isolated from cervical lymph nodes, highlighting a potential oral transmission. High-risk practices were recorded among swine abattoir workers in this study: 75% do not wear gloves or disinfect their knives daily, and 18.8% were willing to work with open wound injuries. CONCLUSIONS: To the best of our knowledge, this is the first isolation of B. suis bv2 in Egypt. Detection of H2S producing B. suis bv2 atypical phenotype is alarming as it may result in misinterpretation of these isolates as highly human pathogenic B. suis bv1 in Egypt and possibly elsewhere. Further epidemiological tracing studies are crucial for the detection of the origin of this biovar. Including pigs in the national surveillance program of brucellosis, and an education program for swine abattoir workers about occupational risk of B. suis is a need in Egypt.


Subject(s)
Brucella suis , Brucellosis , Swine Diseases , Animals , Brucella suis/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Egypt/epidemiology , Female , Male , Multiplex Polymerase Chain Reaction/veterinary , Sus scrofa/genetics , Swine , Swine Diseases/epidemiology
18.
Pathogens ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35745468

ABSTRACT

Burkholderia (B.) mallei is a host-adapted equine pathogen that causes glanders, a re-emerging zoonotic disease, which is endemic in Pakistan and other developing countries and seriously impacts the global equine movement. Due to globalization, the geographical restriction of diseases vanishes and the lack of awareness of and experience with eradicated diseases in industrialized countries also promotes the re-introduction of infections in these regions. Owing to the high equine population, the Pakistani province Punjab is a potential hotspot where several glanders outbreaks have been seen over last two decades. For determining the genomic diversity of B. mallei in this and other equine-populated prefectures, the genomes of 19 B. mallei strains isolated between 1999 and 2020 in different locations were sequenced and their genotypes were determined. Particularly, for genetically highly homogenous pathogens like B. mallei genotyping techniques require a high discriminatory power for enabling differentiation on the strain level. Thus, core-genome single nucleotide polymorphism (cgSNP) analysis was applied for distinguishing the highly similar strains. Furthermore, a whole-genome sequence-based core genome multi locus sequence typing (cgMLST) scheme, specific to B. mallei, was developed and additionally applied to the data. It was found that B. mallei genotypes in Pakistan persisted over time and space and genotype clusters preferred connection with a time point rather than the place of isolation, probably due to frequent equine movement, which promotes the spread of glanders. The cgMLST approach proved to work in accord with SNP typing and may help to investigate future glanders outbreaks.

19.
Microorganisms ; 10(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35208915

ABSTRACT

Anthrax is a recurrent zoonosis in the Ukraine with outbreaks occurring repeatedly in certain areas. For determining whether several Bacillus anthracis genotypes are circulating in this region, four strains from various sources isolated from different regions of the Ukraine were investigated. By combining long- and short-read next-generation sequencing techniques, highly accurate genomes were reconstructed, enabling detailed in silico genotyping. Thus, the strains could be assigned to the Tsiankovskii subgroup of the "TransEurAsia" clade, which is commonly found in this region. Their high genetic similarity suggests that the four strains are members of the endemic population whose progenitor was once introduced in the Ukraine and bordering regions. This study provides information on B. anthracis strains from a region where there is little knowledge of the local population, thereby adding to the picture of global B. anthracis genotype distribution. We also emphasize the importance of surveillance and prevention methods regarding anthrax outbreaks, as other studies predicted a higher number of cases in the future due to global warming.

20.
Microorganisms ; 9(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576838

ABSTRACT

Brucellosis, caused by the bacteria of the genus Brucella, is one of the most neglected common zoonotic diseases globally with a public health significance and a high economic loss among the livestock industry worldwide. Since little is known about the distribution of B. abortus in Egypt, a total of 46 B. abortus isolates recovered between 2012-2020, plus one animal isolate from 2006, were analyzed by examining the whole core genome single nucleotide polymorphism (cgSNP) in comparison to the in silico multilocus variable number of tandem repeat analysis (MLVA). Both cgSNP analysis and MLVA revealed three clusters and one isolate only was distantly related to the others. One cluster identified a rather widely distributed outbreak strain which is repeatedly occurring for at least 16 years with marginal deviations in cgSNP analysis. The other cluster of isolates represents a rather newly introduced outbreak strain. A separate cluster comprised RB51 vaccine related strains, isolated from aborted material. The comparison with MLVA data sets from public databases reveals one near relative from Argentina to the oldest outbreak strain and a related strain from Spain to a newly introduced outbreak strain in Egypt. The distantly related isolate matches with a strain from Portugal in the MLVA profile. Based on cgSNP analysis the oldest outbreak strain clusters with strains from the UK. Compared to the in silico analysis of MLVA, cgSNP analysis using WGS data provides a much higher resolution of genotypes and, when correlated to the associated epidemiological metadata, cgSNP analysis allows the differentiation of outbreaks by defining different outbreak strains. In this respect, MLVA data are error-prone and can lead to incorrect interpretations of outbreak events.

SELECTION OF CITATIONS
SEARCH DETAIL
...