Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6657, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789736

ABSTRACT

How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.

2.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124863

ABSTRACT

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

3.
Phys Rev Lett ; 124(23): 233201, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603143

ABSTRACT

We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV≤E_{γ}≤40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by -3/5 times the photon momentum. These results experimentally confirm a 90-year-old prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...