Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Toxicon ; 122: 94-102, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27597385

ABSTRACT

Pterois russelli is a venomous fish belongs to Scorpaenidae family. Envenomation by the Persian Gulf lionfish is associated with local pain, marked inflammation and local heat. The present study was aimed to document the histopathological changes in liver, heart, lung, kidney and alterations in release of critical enzymes such as LDH, CK. AST, ALT and ALP induced by the administration of various doses of P. russelli venom in a mouse model. LD50 of venom was determined by intravenous injection in Balb/c mice. Histopathological alterations of lung, liver, heart and kidney following injection of one LD50, 1/2 and 1/3 LD50 doses of the venom were evaluated. Simultaneously, release of LDH, CK, AST, ALT and ALP were measured in serum following administration of 1/2 and1/3 LD50 doses of the venom too. LD50 was calculated as 10.5 mg/kg. The level of all enzymes were increased after 3 h and significantly raised after 24 h and rapidly reduced after 48 h. Histological studies showed that one LD50 and 1/2 LD50 doses of the venom induced significant histological alterations in the lungs, liver, heart and kidneys including congestion, hemorrhage, necrosis, apoptosis, edema, and infiltration of inflammatory cells. The results indicate that the venom of P. russelli has nephrotoxic, hepatotoxic, cardiotoxic and pneumotoxic effects in mouse model. Among four examined vital organs, the highest critical events were seen in liver. The findings are useful to give new insight in the fish's venom studies. Gathering the data resulted from this study together will be directed us toward a good aspect concerning the toxicity of potential therapeutic molecules in the venom of lionfish.


Subject(s)
Disease Models, Animal , Marine Toxins/toxicity , Animals , Electrophoresis, Polyacrylamide Gel , Heart/drug effects , Kidney/drug effects , Kidney/pathology , Lethal Dose 50 , Liver/drug effects , Liver/pathology , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Perciformes
3.
Toxicon ; 113: 25-31, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26853495

ABSTRACT

Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 µg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 µg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 µg showed proteolytic activity on casein. The highest edematic activity was detected at 20 µg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding.


Subject(s)
Fish Venoms/toxicity , Perciformes/physiology , Phospholipases A2/metabolism , Animals , Blood Coagulation , Edema , Electrophoresis, Polyacrylamide Gel , Fish Venoms/chemistry , Hemolysis/drug effects , Humans , Indian Ocean , Iran , Lethal Dose 50 , Mice , Mice, Inbred BALB C , Rabbits , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...