Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(10): 5873-82, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25233131

ABSTRACT

Germanium is a promising sodium ion battery (NIB, NAB, SIB) anode material that is held back by its extremely sluggish kinetics and poor cyclability. We are the first to demonstrate that activation by a single lithiation-delithiation cycle leads to a dramatic improvement in the practically achievable capacity, in rate capability, and in cycling stability of Ge nanowires (GeNWs) and Ge thin film (GeTF). TEM and TOF-SIMS analysis shows that without activation, the initially single crystal GeNWs are effectively Na inactive, while the 100 nm amorphous GeTF sodiates only partially and inhomogeneously. Activation with Li induces amorphization in GeNWs reducing the barrier for nucleation of the NaxGe phase(s) and accelerates solid-state diffusion that aids the performance of both GeNWs and GeTF. Low rate (0.1C) Li activation also introduces a dense distribution of nanopores that lead to further improvements in the rate capability, which is ascribed to the lowered solid-state diffusion distances caused by the effective thinning of the Ge walls and by an additional Na diffusion path via the pore surfaces. The resultant kinetics are promising. Tested at 0.15C (1C = 369 mA/g, i.e. Na/Ge 1:1) for 50 cycles the GeNWs and GeTF maintain a reversible (desodiation) capacity of 346 and 418 mAh/g, respectively. They also demonstrate a capacity of 355 and 360 mAh/g at 1C and 284 and 310 mAh/g at 4C. Even at a very high rate of 10C the GeTF delivers 169 mAh/g. Preliminary results demonstrate that Li activation is also effective in promoting cycling stability of Sb blanket films.

2.
Phys Chem Chem Phys ; 15(32): 13646-57, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23836149

ABSTRACT

We demonstrate that silicon nanowire (SiNW) Li-ion battery anodes that are conformally coated with TiO2 using atomic layer deposition (ALD) show a remarkable performance improvement. The coulombic efficiency is increased to ∼99%, among the highest ever reported for SiNWs, as compared to 95% for the baseline uncoated samples. The capacity retention after 100 cycles for the nanocomposite is twice as high as that of the baseline at 0.1 C (60% vs. 30%), and more than three times higher at 5 C (34% vs. 10%). We also demonstrate that the microstructure of the coatings is critically important for achieving this effect. Titanium dioxide coatings with an as-deposited anatase structure are nowhere near as effective as amorphous ones, the latter proving much more resistant to delamination from the SiNW core. We use TEM to demonstrate that upon lithiation the amorphous coating develops a highly dispersed nanostructure comprised of crystalline LiTiO2 and a secondary amorphous phase. Electron energy loss spectroscopy (EELS) combined with bulk and surface analytical techniques are employed to highlight the passivating effect of TiO2, which results in significantly fewer cycling-induced electrolyte decomposition products as compared to the bare nanowires.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Nanowires/chemistry , Silicon/chemistry , Titanium/chemistry , Electrodes , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...