Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Domest Anim Endocrinol ; 78: 106653, 2022 01.
Article in English | MEDLINE | ID: mdl-34455235

ABSTRACT

In cattle, 17ß-estradiol (E2) stimulates prostaglandin F2α (PGF2α) synthesis, which causes luteolysis. Except for the well-established upregulation of oxytocin receptor gene (OXTR), molecular mechanisms of E2-induced PGF2α release in vivo remain unknown. We hypothesized that E2-induced PGF2α release requires de novo transcription of components of the PGF2α synthesis machinery. Beef cows (n = 52) were assigned to remain untreated (Control; n = 10), to receive 50% ethanol infusion intravenously (Placebo; n = 21), or 3 mg E2 in 50% ethanol infusion intravenously (Estradiol; n = 21) on day 15 (D15) after estrus. We collected a single endometrial biopsy per animal at the time of the treatment (0h; Control B0h group), 4 hours (4h; Placebo B4h group and Estradiol B4h group), or 7 hours (7h; Placebo B7h group and Estradiol B7h group) post-treatment. Compared to the Placebo group, the Estradiol group presented significantly greater 13,14-dihydro-15-keto-PGF2α concentrations between 4h and 7h and underwent earlier luteolysis. At 4h, the qPCR analysis showed a lower abundance of ESR1, ESR2 and aldo-keto reductase family 1 member B1 (AKR1B1) genes in the Estradiol B4h group, and a greater abundance of OXTR compared to the Placebo B4h group. Similarly, the E2 treatment significantly reduced the abundance of AKR1B1, and AKR1C4 in the Estradiol B7h group, compared to the placebo group. Overall, E2-induced PGF2α release and luteolysis involved an unexpected and transient downregulation of components of the PGF2α-synthesis cascade, except for OXTR, which was upregulated. Collectively, our data suggest that E2 connects newly-synthesized OXTR to pre-existing cellular machinery to synthesize PGF2α and cause luteal regression.


Subject(s)
Dinoprost , Luteolysis , Animals , Cattle , Corpus Luteum/physiology , Dinoprost/pharmacology , Endometrium , Estradiol/pharmacology , Female , Progesterone , Receptors, Oxytocin/genetics , Uterus
2.
Arq. bras. med. vet. zootec ; 67(5): 1210-1216, tab, graf
Article in English | LILACS | ID: lil-764437

ABSTRACT

In this study, endometrial samples were collected in 14 Nelore cows on days zero (ovulation), five, nine, thirteen and nineteen of the estrous cycle (biopsy group), and in 15 females these collections weren't performed (control group). Biopsies were done on the uterine horn endometrium contralateral to the ovary with corpus luteum. Blood samples were taken at -24, -16, -8, 0 +8, +16 and +24 hours in relation to progesterone drop (<1ng/mL, zero moment) and evaluated for 13, 14-dihydro-15-keto prostaglandin F2-alpha (PGFM) by radioimmunoassay (RIA). Plasma progesterone concentration was determined by RIA every 24 hours. Data were analyzed by ANOVA using the PROC GLM and MIXED of the SAS. The mean value for PGFM during the entire period evaluated was greater in the biopsy group. The mean concentration of PGFM at moment zero was not different between the groups; the mean concentration of PGFM was higher in the biopsy group before and after the drop in progesterone level. The maximum mean concentration observed was not different between the groups; however, the mean minimum concentration was different with high values in the biopsy group. Although the PGFM concentrations were higher in the biopsy group, the biopsy and control groups had similar length of estrous cycle showing that repeated endometrial biopsy on the side contralateral to the ovary with corpus luteum does not affect luteolysis and the length of the estrous cycle.


No presente estudo, foram coletadas amostras endometriais de 14 vacas Nelore nos dias zero (dia da ovulação), cinco, nove, 13 e 19 do ciclo estral (grupo controle), e em 15 fêmeas essas coletas não foram realizadas (grupo controle). As biópsias foram realizadas no corno uterino contralateral ao ovário contendo o corpo lúteo. Amostras plasmáticas foram coletadas nos momentos -24, -16, -8, 0 +8, +16 e +24 horas em relação à queda de progesterona (<1ng/mL, momento zero) e avaliadas quanto à concentração de 13, 14-di-hidro-15-ceto prostaglandina F2-alpha (PGFM) por radioimunoensaio (RIA). As concentrações plasmáticas de progesterona foram avaliadas a cada 24 horas também por RIA. Os dados foram analisados por ANOVA empregando-se PROC GLM e MIXED do SAS. O valor médio de PGFM durante todo o período avaliado foi maior no grupo biópsia. A concentração média de PGFM no momento zero não diferiu entre os grupos, e foi maior no grupo biópsia antes e após a queda de progesterona. A concentração máxima observada não foi diferente entre os grupos, porém a concentração mínima diferiu com maiores valores observados no grupo biópsia. Embora as concentrações de PGFM fossem maior no grupo biópsia, ambos os grupos apresentaram o mesmo comprimento do ciclo estral, demonstrando que a coleta repetitiva de biópsias endometriais no corno uterino contraletral ao ovário contendo o corpo lúteo não afeta a luteólise e o comprimento do ciclo estral.


Subject(s)
Animals , Cattle , Cell Membrane , Corpus Luteum , Dinoprost , Endometrium , Progesterone , Biopsy/veterinary , Cervix Uteri , Estrous Cycle
3.
Theriogenology ; 81(6): 861-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24507960

ABSTRACT

In beef cattle, the ability to conceive has been associated positively with size of the preovulatory follicle (POF). Proestrus estradiol and subsequent progesterone concentrations can regulate the endometrium to affect receptivity and fertility. The aim of the present study was to verify the effect of the size of the POF on luteal and endometrial gene expression during subsequent early diestrus in beef cattle. Eighty-three multiparous, nonlactating, presynchronized Nelore cows received a progesterone-releasing device and estradiol benzoate on Day-10 (D-10). Animals received cloprostenol (large follicle-large CL group; LF-LCL; N = 42) or not (small follicle-small CL group; SF-SCL; N = 41) on D-10. Progesterone devices were withdrawn and cloprostenol administered 42 to 60 hours (LF-LCL) or 30 to 36 hours (SF-SCL) before GnRH treatment (D0). Tissues were collected at slaughter on D7. The LF-LCL group had larger (P < 0.0001) POF (13.24 ± 0.33 mm vs. 10.76 ± 0.29 mm), greater (P < 0.0007) estradiol concentrations on D0 (2.94 ± 0.28 pg/mL vs. 1.27 ± 0.20 pg/mL), and greater (P < 0.01) progesterone concentrations on D7 (3.71 ± 0.25 ng/mL vs. 2.62 ± 0.26 ng/mL) compared with the SF-SCL group. Luteal gene expression of vascular endothelial growth factor A, kinase insert domain receptor, fms-related tyrosine kinase 1, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 was similar between groups. Endometrial gene expression of oxytocin receptor and peptidase inhibitor 3, skin-derived was reduced, and estrogen receptor alpha 2, aldo-keto reductase family 1, member C4, and lipoprotein lipase expression was increased in LF-LCL versus SF-SCL. Results support the hypothesis that the size of the POF alters the periovulatory endocrine milieu (i.e., proestrus estradiol and diestrus progesterone concentrations) and acts on the uterus to alter endometrial gene expression. It is proposed that the uterine environment and receptivity might also be modulated. Additionally, it is suggested that increased progesterone secretion of cows ovulating larger follicles is likely due to increased CL size rather than increased luteal expression of steroidogenic genes.


Subject(s)
Corpus Luteum/metabolism , Diestrus , Endometrium/metabolism , Gene Expression Regulation, Developmental , Ovarian Follicle/physiology , Animals , Cattle , Estradiol/administration & dosage , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrus Synchronization , Female , Gene Expression , Ovarian Follicle/diagnostic imaging , Progesterone/administration & dosage , Progesterone/blood , Progesterone/pharmacology , Ultrasonography
4.
Theriogenology ; 76(4): 751-8, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21719091

ABSTRACT

The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF(2α)) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P(4)) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAI) on Day 0. On Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine®; Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin®; Intervet Schering-Plough), and 2500 IU hCG (Chorulon®; Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P(4) did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P(4) concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P(4) concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy.


Subject(s)
Cattle/physiology , Chorionic Gonadotropin/pharmacology , Clonixin/analogs & derivatives , Growth Hormone/pharmacology , Insemination, Artificial/veterinary , Progesterone/blood , Animals , Cattle/blood , Clonixin/pharmacology , Dinoprost/antagonists & inhibitors , Dinoprost/biosynthesis , Female , Male , Pregnancy
5.
Reprod Domest Anim ; 45(5): 881-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19392666

ABSTRACT

The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)α and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF(2)α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F(2)α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.


Subject(s)
Cattle/physiology , Dinoprost/analogs & derivatives , Fertility Agents, Female/pharmacology , Oxytocin/pharmacology , Progesterone/pharmacology , Animals , Dinoprost/metabolism , Female , Fertility Agents, Female/administration & dosage , Ovulation/drug effects , Postpartum Period
SELECTION OF CITATIONS
SEARCH DETAIL
...