Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 37(6): 1261-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26357347

ABSTRACT

Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented.

2.
IEEE Trans Pattern Anal Mach Intell ; 35(8): 1829-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23787339

ABSTRACT

A fundamental operation in many vision tasks, including motion understanding, stereopsis, visual odometry, or invariant recognition, is establishing correspondences between images or between images and data from other modalities. Recently, there has been increasing interest in learning to infer correspondences from data using relational, spatiotemporal, and bilinear variants of deep learning methods. These methods use multiplicative interactions between pixels or between features to represent correlation patterns across multiple images. In this paper, we review the recent work on relational feature learning, and we provide an analysis of the role that multiplicative interactions play in learning to encode relations. We also discuss how square-pooling and complex cell models can be viewed as a way to represent multiplicative interactions and thereby as a way to encode relations.


Subject(s)
Artificial Intelligence , Pattern Recognition, Automated/methods , Pattern Recognition, Visual , Algorithms , Humans
3.
IEEE Trans Pattern Anal Mach Intell ; 34(4): 778-90, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21808087

ABSTRACT

Latent variable models, such as the GPLVM and related methods, help mitigate overfitting when learning from small or moderately sized training sets. Nevertheless, existing methods suffer from several problems: 1) complexity, 2) the lack of explicit mappings to and from the latent space, 3) an inability to cope with multimodality, and 4) the lack of a well-defined density over the latent space. We propose an LVM called the Kernel Information Embedding (KIE) that defines a coherent joint density over the input and a learned latent space. Learning is quadratic, and it works well on small data sets. We also introduce a generalization, the shared KIE (sKIE), that allows us to model multiple input spaces (e.g., image features and poses) using a single, shared latent representation. KIE and sKIE permit missing data during inference and partially labeled data during learning. We show that with data sets too large to learn a coherent global model, one can use the sKIE to learn local online models. We use sKIE for human pose inference.


Subject(s)
Models, Theoretical , Humans , Pattern Recognition, Automated/methods
4.
Neural Comput ; 22(6): 1473-92, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20141471

ABSTRACT

To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Pattern Recognition, Automated/methods , Pattern Recognition, Visual/physiology , Space Perception/physiology , Algorithms , Mathematical Concepts
5.
IEEE Trans Pattern Anal Mach Intell ; 27(9): 1379-91, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16173183

ABSTRACT

We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practical solution to the model selection problem because all parameters can be estimated by leave-one-out cross-validation without additional computational cost. In addition, our approach allows for a convenient incorporation of nonlinear spectral methods for parameter initialization, beyond classical initializations based on linear PCA. Furthermore, it shows a simple way to fit principal surfaces in general feature spaces, beyond the usual data space setup. The experimental results illustrate these convenient features on simulated and real data.


Subject(s)
Algorithms , Artificial Intelligence , Models, Statistical , Pattern Recognition, Automated/methods , Information Storage and Retrieval/methods , Principal Component Analysis
6.
Neural Netw ; 18(5-6): 702-10, 2005.
Article in English | MEDLINE | ID: mdl-16112551

ABSTRACT

We introduce spectral gradient descent, a way of improving iterative dimensionality reduction techniques. The method uses information contained in the leading eigenvalues of a data affinity matrix to modify the steps taken during a gradient-based optimization procedure. We show that the approach is able to speed up the optimization and to help dimensionality reduction methods find better local minima of their objective functions. We also provide an interpretation of our approach in terms of the power method for finding the leading eigenvalues of a symmetric matrix and verify the usefulness of the approach in some simple experiments.


Subject(s)
Artificial Intelligence , Data Interpretation, Statistical , Algorithms , Cluster Analysis , Models, Statistical , Nonlinear Dynamics , Principal Component Analysis , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL