Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 117(38): 19558-19567, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24089625

ABSTRACT

Growth, thermal stability, and structure of ultrathin gallium films on Pd(111) and Pd(110) are investigated by low-energy ion scattering and low-energy electron diffraction. Common to both surface orientations are growth of disordered Ga films at coverages of a few monolayers (T = 150 K), onset of alloy formation at low temperatures (T ≈ 200 K), and formation of a metastable, mostly disordered 1:1 surface alloy at temperatures around 400-500 K. At higher temperatures a Ga surface fraction of ∼0.3 is slightly stabilized on Pd(111), which we suggest to be related to the formation of Pd2Ga bulk-like films. While on Pd(110) only a Pd-up/Ga-down buckled surface was observed, an inversion of buckling was observed on Pd(111) upon heating. Similarities and differences to the related Zn/Pd system are discussed.

2.
J Phys Chem C Nanomater Interfaces ; 117(33): 17024-17032, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23991229

ABSTRACT

Adsorption and coadsorption of carbon monoxide and oxygen on different types of Au clusters on R(15 × 3)C/W(110) and R(15 × 12)C/W(110), respectively, are studied with respect to the catalytic behavior for oxidation of CO as well as of surface carbon. Carburization of the W(110) surface results in a weakening of the adsorption bond for molecularly adsorbed CO. Dissociation of carbon monoxide, which occurs on W(110), is reduced on the low-carbon coverage R(15 × 12) surface and completely suppressed on the carbon-saturated R(15 × 3) phase. Deposition of gold results in a blocking of adsorption sites for molecularly adsorbed CO and reopening of the dissociation channel. Probably the latter is associated with the existence of double-layer gold clusters and islands. At room temperature the gold clusters on both carburized templates are stable in CO atmosphere as shown by in-situ STM measurements. In contrast, exposure to oxygen alters the clusters on the R(15 × 12) surface, implying dissociation of oxygen not only on the substrate but also on or in immediate vicinity of the gold clusters. On the Au-free carburized templates oxygen adsorbs dissociatively and is released as CO at temperatures beyond 800 K due to reaction with carbon atoms from the templates. Deposition of gold enhances the desorption rate of the formed CO at the low-temperature end of the recombinative CO desorption range, indicating a promoting effect of gold for oxidation of surface carbon. In contrast, low-temperature CO oxidation catalyzed by the deposited Au clusters is not observed. Two reasons could be identified: (1) weakly bound CO with desorption temperatures between 100 and 200 K (as reported for other related systems) is not observed, and (2) oxygen atoms are bonded too strongly to the templates.

3.
J Catal ; 290(C): 126-137, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22875996

ABSTRACT

In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503-523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature.In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO(2) selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported Pd(x)Ga/Ga(2)O(3) systems, which exhibit high CO(2) selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO(2) selectivity already at low temperatures (∼460 K), which is due to efficient O(2) activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C(1) oxygenates to CO(2).

5.
Appl Surf Sci ; 258(24): 10123-10127, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23482867

ABSTRACT

Reflectance difference spectroscopy (RDS) is applied to follow in situ the preparation of clean and carburized W(1 1 0) surfaces and to study the temperature-induced transition between the R(15 × 3) and R(15 × 12) carbon/tungsten surface phases. RDS data for this transition are compared to data obtained from Auger-electron spectroscopy and low-energy electron diffraction. All techniques reveal that this transition, occurring around 1870 K, is reversible with a small hysteresis, indicating a first-order-like behaviour. The present results also prove a high surface sensitivity of RDS, which is attributed to the excitation of electronic p-like surface resonances of W(1 1 0).

6.
Surf Sci ; 605(13-14): 1263-1270, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779133

ABSTRACT

Noble metal nanostructures of Au, Ag and Cu were prepared on two types of carbon-modified W(110) surfaces-R(15 × 12) and R(15 × 3)-and investigated by means of scanning tunneling microscopy. For all deposited metals qualitatively the same behaviour is observed: On the R(15 × 12)-template always isotropic clusters are formed. In contrast, on the R(15 × 3)-substrate the anisotropy of the nanostructures can be tuned from clusters at low temperatures via thin nanowires to thicker nanobars at high deposition temperatures. At intermediate temperatures on the R(15 × 3) the anisotropic Au nanowires arrange themselves into straight lines along domain boundaries induced by deposition of the Au metal. Similarities and differences to Au nanostructures as recently reported by Varykhalov et al. [A. Varykhalov, O. Rader, W. Gudat. Physical Review B 77, 035412 (2008).] are discussed.

8.
Surf Sci ; 603(1-3): 251-255, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-20953413

ABSTRACT

Low-energy ion scattering with monolayer sensitivity was applied to investigate ultrathin films of zinc on Pd(1 1 1). Uptake curves taken at 150 K indicate the simultaneous growth of multilayers with negligible interlayer transport. Annealing experiments for two-monolayer films reveal a rapid decrease in the zinc content on the surface layer at temperatures above 300 K, forming a metastable state with a Pd:Zn surface ratio of approx. 1:1 in the temperature region between 400 and 550 K. This state is most easily explained as a slightly buckled p(2 × 1)-PdZn surface alloy, with Zn atoms located approx. 0.25 Å above their Pd counterparts.

9.
J Nanosci Nanotechnol ; 7(12): 4581-7, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18283848

ABSTRACT

Nanocrystalline diamond (NCD) has recently been successfully utilized in a variety of life science applications. NCD films are favorable and salubrious substrates for cells during cultivation. Therefore NCD has also been employed in tissue engineering strategies. NCD as reported in this contribution was grown by means of a modified hot-filament chemical vapor deposition technique, which results in less than 3% sp2-hybridization and yields grain sizes of 5-20 nm. After production the NCD surface was rather hydrophobic, however it could be efficiently refined to exhibit more hydrophilic properties. Changing of the surface structure was found to be an efficient means to influence growth and differentiation capacity of a variety of cells. The particular needs for any given cell type has to be proven empirically. Yet flexible features of NCD appear to be superior to plastic surfaces which can be hardly changed in quality. Besides its molecular properties, crystal structural peculiarities of NCD appear to influence cell growth as well. In our attempt to facilitate, highly specialized applications in biomedicine, we recently discovered that growth factors can be tightly bound to NCD by mere physisorption. Hence, combination of surface functionalization together with further options to coat NCD with any kind of three-dimensional structure opens up new avenues for many more applications. In fact, high through-put protein profiling of early disease stages may become possible from serum samples, because proteins bound to NCD can now be efficiently analyzed by MALDI/TOF-MS. Given these results, it is to be presumed that the physical properties and effective electrochemical characteristics of NCD will allow tailoring devices suitable for many more diagnostic as well as therapeutic applications.


Subject(s)
Diamond/chemistry , Nanoparticles , Cells, Cultured , Crystallization , Crystallography, X-Ray , Electrochemistry , Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Engineering
10.
Biomaterials ; 27(26): 4547-56, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16725197

ABSTRACT

Nano-crystalline diamond (NCD)-coated surfaces were efficiently functionalized with bone morphogenetic protein-2 (BMP-2) by means of physisorption. Due to their randomly oriented texture, NCD-coated surfaces appear to bind complex molecules firmly. Applying various highly sensitive analytical methods, the interaction was found extremely stable. The strength of the experimentally measured adherence between BMP-2 and NCD was further corroborated by theoretical calculations. Oxygen treatment rendered NCD hydrophilic by the appearance of surface oxygen containing groups. This particular NCD surface exhibited even higher binding energies towards BMP-2 than the hydrophobic surface, and this surface was also favoured by cultured cells. Most importantly in this context, bound BMP-2 was found fully active. When cultured on BMP-2-treated NCD, osteosarcoma cells strongly up-regulated alkaline phosphatase, a specific marker for osteogenic differentiation. Hence, this simple method will allow generating highly versatile surfaces with complex biomimetic coatings, essentials for novel medical devices and implants as well as for innovative scaffolds in tissue engineering.


Subject(s)
Bone Morphogenetic Proteins/chemistry , Bone Substitutes , Coated Materials, Biocompatible/chemistry , Diamond/chemistry , Tissue Engineering/methods , Transforming Growth Factor beta/chemistry , Absorption , Alkaline Phosphatase/analysis , Bone Morphogenetic Protein 2 , Humans , Nanostructures/chemistry , Osteogenesis , Oxygen/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Properties , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...