Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 87: 125-134, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109511

ABSTRACT

The environmentally safe disposal of the large quantity of orange peels waste produced each day causes economic and environmental problems, which after conversion into biochar via pyrolysis technique might be used as an effective soil amendment. In this study, a 90-day incubation experiment was conducted to investigate the effects of orange peel waste and waste-derived biochar amendments on greenhouse gas emissions (GHG), soil biochemical properties, and soil enzyme activities. There were five treatments with different amendment levels: control without an amendment (Control), orange waste 1% (W1), orange waste 2% (W2), orange waste biochar 1% (B1), and orange waste biochar 2% (B2). The results showed that, compared with control, the amendments decreased cumulative N2O emissions by 59.2% (B2), 45.2% (B1), 20.6% (W2) and 10.2% (W1), respectively; and increased cumulative CH4 emissions by 81.7% (W1), 84.4% (W2), 75.8% (B1) and 74.9% (B2), respectively. Cumulative CO2 emissions decreased for the B1 (29.3%) and B2 (43.5%) over the waste treatments. While soil pH, SOC, nitrate nitrogen (NO3--N) and enzyme activities (urease and catalase) were significantly increased with the passage of time from the biochar amendments, ammonium nitrogen (NH4+-N) and invertase activities did not show this trend with time. Our study suggests that orange peel waste conversion to biochar should be a viable alternate method of disposal since land application resulted in reduced GHG and improvements in soil fertility.


Subject(s)
Citrus sinensis , Greenhouse Gases , Charcoal , Nitrous Oxide , Soil
2.
Molecules ; 24(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075937

ABSTRACT

The conversion of organic wastes into biochar via the pyrolysis technique could be used to produce soil amendments useful as a source of plant nutrients. In this study, we investigated the effects of fruit peels and milk tea waste-derived biochars on wheat growth, yield, root traits, soil enzyme activities and nutrient status. Eight amendment treatments were tested: no amendment (CK), chemical fertilizer (CF), banana peel biochar 1% (BB1 + CF), banana peel biochar 2% (BB2 + CF), orange peel biochar 1% (OB1 + CF), orange peel biochar 2% (OB2 + CF), milk tea waste biochar 1% (TB1 + CF) and milk tea waste biochar 2% (TB2 + CF). The results indicated that chlorophyll values, plant height, grain yield, dry weight of shoot and root were significantly (p < 0.05) increased for the TB2 + CF treatment as compared to other treatments. Similarly, higher contents of nutrients in grains, shoots and roots were observed for TB2 + CF: N (61.3, 23.3 and 7.6 g kg-1), P (9.2, 10.4 and 8.3 g kg-1) and K (9.1, 34.8 and 4.4 g kg-1). Compared to CK, the total root length (41.1%), surface area (56.5%), root volume (54.2%) and diameter (78.4%) were the greatest for TB2 + CF, followed by BB2 + CF, OB2 + CF, TB1 + CF, BB1 + CF, OB1 + CF and CF, respectively. However, BB + CF and OB + CF treatments increased ß-glucosidase and dehydrogenase, but not urease activity, as compared to the TB + CF amendment, while all enzyme activity decreased with the increased biochar levels. We concluded that the conversion of fruit peels and milk tea waste into biochar products contribute the benefits of environmental and economic issues, and should be tested as soil amendments combined with chemical fertilizers for the improvement of wheat growth and grain yield as well as soil fertility status under field conditions.


Subject(s)
Charcoal/pharmacology , Clay/chemistry , Soil/chemistry , Triticum/growth & development , Carbon/analysis , Fertilizers , Hydrogen-Ion Concentration , Nitrogen/analysis , Organic Chemicals/analysis , Phosphorus/analysis , Plant Roots/chemistry , Plant Shoots/chemistry , Potassium/analysis , Principal Component Analysis , Seeds/chemistry , Triticum/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...