Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(18): 16757-65, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26158290

ABSTRACT

We previously analyzed human prostate tissue containing stroma near to tumor and from cancer-negative tissues of volunteers. Over 100 candidate gene expression differences were identified and used to develop a classifier that could detect nearby tumor with an accuracy of 97% (sensitivity = 98% and specificity = 88%) based on 364 independent test cases from primarily European American cases. These stroma-based gene signatures have the potential to identify cancer patients among those with negative biopsies. In this study, we used prostate tissues from Chinese cases to validate six of these markers (CAV1, COL4A2, HSPB1, ITGB3, MAP1A and MCAM). In validation by real-time PCR, four genes (COL4A2, HSPB1, ITGB3, and MAP1A) demonstrated significantly lower expression in tumor-adjacent stroma compared to normal stroma (p value ≤ 0.05). Next, we tested whether these expression differences could be extended to the protein level. In IHC assays, all six selected proteins showed lower expression in tumor-adjacent stroma compared to the normal stroma, of which COL4A2, HSPB1 and ITGB3 showed significant differences (p value ≤ 0.05). These results suggest that biomarkers for diagnosing prostate cancer based on tumor microenvironment may be applicable across multiple racial groups.


Subject(s)
Biomarkers, Tumor/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , China , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prostate/pathology , Tumor Microenvironment , White People/genetics , Young Adult
2.
Oncotarget ; 6(2): 1286-301, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25428913

ABSTRACT

HER2-positive breast cancer accounts for 25% of all cases and has a poor prognosis. Although progress has been made in understanding signal transduction, little is known of how HER2 achieves gene regulation. We performed whole genome expression analysis on a HER2⁺ and HER2⁻ breast cancer cell lines and compared these results to expression in 812 primary tumors stratified by their HER2 expression level. Chip-on-chip with anti-RNA polymerase II was compared among breast cancer cell lines to identify genes that are potentially activated by HER2. The expression levels of these HER2-dependent POL II binding genes were determined for the 812 HER2+/- breast cancer tissues. Genes differentially expressed between HER2+/- cell lines were generally regulated in the same direction as in breast cancer tissues. We identified genes that had POLII binding in HER2⁺ cell lines, but without significant gene expression. Of 737 such genes "poised" for expression in cell lines, 113 genes were significantly differentially expressed in breast tumors in a HER2-dependent manner. Pathway analysis of these 113 genes revealed that a large group of genes were associated with stem cell and progenitor cell control as indicated by networks centered on NANOG, SOX2, OCT3/4. HER2 directs POL II binding to a large number of genes in breast cancer cells. A "poised" class of genes in HER2⁺ cell lines with POLII binding and low RNA expression but is differentially expressed in primary tumors, strongly suggests a role of the microenvironment and further suggests a role for stem cells proliferation in HER2-regulated breast cancer tissue.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Receptor, ErbB-2/genetics , Regulon/genetics , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Gene Regulatory Networks , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , MCF-7 Cells , Nanog Homeobox Protein , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , RNA Polymerase II/metabolism , Receptor, ErbB-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...