Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 156: 75-84, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28099886

ABSTRACT

Temperature is one of the pivotal factors influencing mycelium growth and fruit-body formation of Flammulina velutipes. To gain insights into hyphae growth and fruit-body formation events and facilitate the identification of potential stage-specific biomarker candidates, we investigated the proteome response of F. velutipes mycelia to cold stresses using iTRAQ-coupled two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) technique. Among 1198 proteins identified with high confidence, a total of 63 displayed altered expression level after cold stress treatments. In-depth data analysis reveals that differentially expressed proteins were involved in a variety of cellular processes, particularly metabolic processes. Among the 31 up-regulated proteins, 24 (77.42%) were associated with 22 specific KEGG pathways. These up-regulated proteins could possibly serve as potential biomarkers to study the molecular mechanisms of F. velutipes mycelia response to cold stresses. These data of the proteins might provide valuable evidences to better understand the molecular mechanisms of mycelium resistance to cold stress and fruit-body formation in fungi. BIOLOGICAL SIGNIFICANCE: Low-temperature is one of the pivotal factors in some Flammulina velutipes industrial processes influencing mycelium growth, inducing primordia and controlling fruit-body development. Preliminary study has indicated that effectively regulating cultivation could augment the yield by controlling optimal cold stress level on mycelia. However, we are still far from understanding the molecular and physiological mechanisms of adaptation of these fungi at cold stress. In the present study, the experiments reported above were undertaken to investigate chronological changes of protein expression during F. velutipes mycelia in response to cold stress by using iTRAQ-coupled 2D LC-MS/MS technique. This result would provide new insights to the underlying mycelium growth and fruit-body formation mechanisms of basidiomycetes under cold stress.


Subject(s)
Cold Temperature , Flammulina/chemistry , Proteome/analysis , Proteomics/methods , Stress, Physiological , Chromatography, Liquid , Flammulina/growth & development , Flammulina/physiology , Fungal Proteins/analysis , Gene Expression Regulation, Fungal , Life Cycle Stages , Mycelium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...