Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 9: e11065, 2021.
Article in English | MEDLINE | ID: mdl-33976958

ABSTRACT

BACKGROUND: Irisin (a glycosylated protein) is cleaved from fibronectin type III domain-containing protein 5 (FNDC5), which is expressed mainly in animal muscle tissues and has multiple metabolic regulatory activities. However, their roles in controlling myofiber types in skeletal muscle remain unclear. METHODOLOGY: Two different commercial hybridized pigs, LJH (a crossed pig containing Chinese native pig genotypes) and DLY (Duroc × Landrace × Yorkshire) were selected to analyze FNDC5 mRNA expression and the mRNA composition of four adult myosin heavy chain (MyHC) isoforms (IIIaIIxIIb) in the longissimus dorsi (LD) muscle. C2C12 myoblasts were cultured to investigate the effects of FNDC5 on the four MyHCs mRNA expressive levels, using small interfering RNA for depletion and a eukaryotic expression vector carrying FNDC5 for overexpression. ZLN005 (a small molecule activator of FNDC5's upstream control gene PGC1α) or recombinant human irisin protein were also used. RESULTS: In LD muscle, LJH pigs had the higher FNDC5 mRNA level, and MyHC I or IIa proportion than DLY pigs (P <  0.05). For C2C12 cells in vitro, small interfering RNA (si-592) silencing of FNDC5 expression markedly reduced MyHC IIa mRNA levels (P <  0.05), while FNDC5 overexpression significantly increased MyHC IIa mRNA levels (P <  0.05). Exogenous irisin increased the mRNA levels of PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), FNDC5, MyHCI, MyHCIIa, NRF1 (nuclear respiratory factor 1), VEGF (vascular endothelial growth factor), and TFAM (mitochondrial transcription factor A,) (P <  0.05), and the enzyme activities of SDH (succinate dehydrogenase), CK (creatine kinase), and MDH (malate dehydrogenase) in C2C12 myotubes (P <  0.05). These results showed that FNDC5 mRNA expression had a significant association with the characteristics of myofiber types in porcine muscle, and participated in regulating MyHCs mRNA expression of C2C12 myogenic differentiation cells in vitro. FNDC5 could be an important factor to control muscle fiber types, which provides a new direction to investigate pork quality via muscle fiber characteristics.

2.
Peptides ; 52: 11-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24274971

ABSTRACT

The rapid degradation of porcine glucagon-like peptide-2 (pGLP-2) by the enzyme dipeptidyl peptidase-IV (DPP-IV) is the main impediment in the development of pGLP-2 as a potential therapeutic agent for intestinal dysfunction and damage. In this study, one mono-modified Lys(30)-polyethylene glycol (PEG)-pGLP-2 was prepared using mPEG-succinimidyl propionate. To determine the optimized condition for PEGylation, the reactions were monitored by RP-HPLC and MALDI-TOF-MS. Stability was tested in purified DPP-IV in vitro. In vivo, the protective effects for colonic injury were measured in dextran sulfate sodium (DSS)-induced colitis in mice. The monoPEGylated products reached the maximum yield at 4:1 ratio of mPEG5k-SPA to pGLP-2. An effective method of successfully separating PEGylated pGLP-2 from mPEG-SPA5kD using CM Sepharose Fast Flow resin was established. The half-life of Lys(30)-PEG-pGLP-2 was 16-fold longer than that of pGLP-2 in DPP-IV. The DSS mice exhibited marked weight loss), which was significantly reduced by Lys(30)-PEG-pGLP-2 therapy. DSS treatment significantly increased colonic damage score, which was significantly reduced by administration of Lys(30)-PEG-pGLP-2 in DSS-mice. DSS-induced colitis clearly induced Myeloperoxidase activity in the colon, which was significantly reduced by treatments with 3% DSS-pGLP-2 or 3% DSS-PEG-pGLP-2. These results showed that site-specific Lys(30)-PEG-GLP-2 was resistant to degradation and reduced the severity of colonic injury in murine colitis. The enhanced biological potency of this product highlighted its potential as a therapeutic agent for intestinal diseases.


Subject(s)
Colitis/drug therapy , Colon/metabolism , Glucagon-Like Peptide 2/pharmacology , Polyethylene Glycols/pharmacology , Animals , Chronic Disease , Colitis/chemically induced , Colitis/mortality , Colitis/pathology , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Glucagon-Like Peptide 2/chemistry , Male , Mice , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...