Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400517, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760889

ABSTRACT

Photoacoustic imaging (PAI) can sensitively detect regions and substances with strong optical absorption, which means that diseased tissue can be imaged with high contrast in the presence of surrounding healthy tissue through the photoacoustic effect. However, its signal intensity and resolution may be limited by background signals generated by endogenous chromophores such as melanin and hemoglobin. A feasible method for practical application of this so-called background-suppressed PAI is still lacking. In this work, a dual-wavelength differential background noise-suppressed photoacoustic tomography is developed based on organic semiconducting polymer dots (Pdots). The Pdots have a strong absorption peak at 945 nm, and then the absorption decreases sharply with the increase of wavelength, and the absorption intensity drops to only about a quarter of the original value at 1050 nm. The present system significantly suppresses the strong background noise of blood through dual-wavelength differential PAI, enabling precise monitoring of the distribution information of theranostic agents in diseased tissues. The signal-to-noise ratio of the theranostic agent distribution map is increased by about 20 dB. This work provides a platform for real-time and accurate monitoring of tumors and drugs, which helps avoid damage to healthy tissue during treatment and has clinical significance in cancer treatment.

2.
Medicine (Baltimore) ; 103(16): e37798, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640295

ABSTRACT

Although several studies have reported a link between chronic atrophic gastritis (CAG) and atherosclerosis, the underlying mechanisms have not been elucidated. The present study aimed to investigate the molecular mechanisms common to both diseases from a bioinformatics perspective. Gene expression profiles were obtained from the Gene Expression Omnibus database. Data on atherosclerosis and CAG were downloaded from the GSE28829 and GSE60662 datasets, respectively. We identified the differentially expressed genes co-expressed in CAG and atherosclerosis before subsequent analyses. We constructed and identified the hub genes and performed functional annotation. Finally, the transcription factor (TF)-target genes regulatory network was constructed. In addition, we validated core genes and certain TFs. We identified 116 common differentially expressed genes after analyzing the 2 datasets (GSE60662 and GSE28829). Functional analysis highlighted the significant contribution of immune responses and the positive regulation of tumor necrosis factor production and T cells. In addition, phagosomes, leukocyte transendothelial migration, and cell adhesion molecules strongly correlated with both diseases. Furthermore, 16 essential hub genes were selected with cytoHubba, including PTPRC, TYROBP, ITGB2, LCP2, ITGAM, FCGR3A, CSF1R, IRF8, C1QB, TLR2, IL10RA, ITGAX, CYBB, LAPTM5, CD53, CCL4, and LY86. Finally, we searched for key gene-related TFs, especially SPI1. Our findings reveal a shared pathogenesis between CAG and atherosclerosis. Such joint pathways and hub genes provide new insights for further studies.


Subject(s)
Atherosclerosis , Gastritis, Atrophic , Humans , Gastritis, Atrophic/genetics , Atherosclerosis/genetics , Cell Movement , Computational Biology , Data Analysis , Gene Expression Profiling
3.
Biosens Bioelectron ; 250: 116082, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38308942

ABSTRACT

Reduced nicotinamide adenine dinucleotide (NADH) has a strong impact on physiological metabolism, and its concentration is related to metabolic and neurodegenerative diseases. A more reliable and accurate detection method for NADH quantitation is needed for early disease diagnosis and point-of-care testing. Aggregation-induced emission (AIE) materials are widely used to improve the sensitivity in analytes assays due to their anti-aggregation-caused quenching property. Here we developed TPA-BQD-Py AIE-dots transducers and evaluated its performance in NADH detection. The NADH concentration-dependent ratiometric sensing was based on electron transfer from TPA-BQD-Py AIE-dots to NADH with variable fluorescence intensity at 584 nm and 470 nm, resulting in high sensitivity (limit of detection at 110 nM), photostability, selectivity, and a rapid and reversible response. We further developed the application of TPA-BQD-Py AIE-dots transducers in in vivo NADH imaging using a smartphone and digital camera, respectively, demonstrating the potential for NADH point-of-care testing.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , NAD , Point-of-Care Systems , Fluorescence , Spectrometry, Fluorescence
4.
Nanoscale ; 16(10): 4961-4973, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38390689

ABSTRACT

Microbial contamination and antibiotic pollution have threatened public health and it is important to develop a rapid and safe sterilization strategy. Among various disinfection strategies, photocatalytic antibacterial methods have drawn increasing attention due to their efficient disinfection performances and environment-friendly properties. Although there are some reviews about bacterial disinfection, specific reviews on photocatalysis focused on inorganic semiconductor nanomaterials are rarely reported. Herein, we present a systematic summary of recent disinfection developments based on inorganic nanomaterials (including metal oxides, sulfides, phosphides, carbon materials, and corresponding heterostructures) over the past five years. Moreover, key factors and challenges for inorganic nanomaterial-based photocatalytic disinfection are outlined, which holds great potential for future photocatalytic antibacterial applications.


Subject(s)
Anti-Bacterial Agents , Nanostructures , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Disinfection , Oxides , Semiconductors
5.
Mater Today Bio ; 16: 100383, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36017109

ABSTRACT

Glioma with very short medium survival time consists of 80% of primary malignant types of brain tumors. The unique microenvironment such as the existence of the blood-brain barrier (BBB) makes the glioma theranostics exhibit low sensitivity in diagnosis, a poor prognosis and low treatment efficacy. Therefore, the development of multifunctional nanoplatform that can cross BBB and target the glioma is essential for the high-sensitivity detection and ablation of cancer cells. In this study, C6 cell membrane-coated conjugated polymer dots (Pdots-C6) were constructed for targeted glioma tumor detection. As a new kind of biomimetic and biocompatible nanoprobes, Pdots-C6 preserve the complex biological functions of natural cell membranes while possessing physicochemical properties for NIR-II fluorescence imaging of glioma. After encapsulating C6 cell membrane on the surface of conjugated Pdots, Pdots-C6 exhibited the most favorable specific targeting capabilities in vitro and in vivo. In particular, this pilot study demonstrates that biomimetic nanoparticles offer a potential tool to enhance specific targeting to the brain, hence improving glioma tumor detection accuracy.

6.
Nanoscale ; 13(31): 13410-13420, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477746

ABSTRACT

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) has drawn considerable attention due to the deeper tissue penetration and higher maximum permissible exposure. However, current phototheranostic agents are greatly restricted by weak absorption in the second near-infrared (NIR-II, 1000-1700 nm) window, long-term toxicity, and poor photostability. In this report, novel organic NIR-II conjugated polymer nanoparticles (CPNs) based on narrow bandgap donor-acceptor BDT-TBZ polymers were developed for effective cancer PAI and PTT. Characterization data confirmed the high photothermal conversion efficiency, good photostability, excellent PAI performance, and superior biocompatibility of as-obtained CPNs. In addition, in vitro and in vivo tests demonstrated the efficient PTT effect of CPNs in ablating cancer cells and inhibiting tumor growth under 1064 nm laser irradiation. More importantly, the CPNs exhibited rapid clearance capability through the biliary pathway and negligible systematic toxicity. Thus, this work provides a novel organic theranostic nanoplatform for NIR-II PAI-guided PTT, which advances the future clinical translation of biocompatible and metabolizable conjugated nanomaterials in cancer diagnosis and therapy.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phototherapy , Polymers , Precision Medicine , Theranostic Nanomedicine
7.
Nano Lett ; 21(10): 4255-4261, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33733782

ABSTRACT

Here, we developed a novel, multimode superresolution method to perform full-scale structural mapping and measure the energy landscape for single carrier transport along conjugated polymer nanowires. Through quenching of the local emission, the motion of a single photogenerated hole was tracked using blinking-assisted localization microscopy. Then, utilizing binding and unbinding dynamics of quenchers onto the nanowires, local emission spectra were collected sequentially and assembled to create a superresolution map of emission sites throughout the structure. The hole polaron trajectories were overlaid with the superresolution maps to correlate structures with charge transport properties. Using this method, we compared the efficiency of inter- and intrachain hole transport inside the nanowires and for the first time directly measured the depth of carrier traps originated from torsional disorder and chemical defects.


Subject(s)
Nanowires , Microscopy , Polymers
8.
ACS Appl Mater Interfaces ; 12(46): 51174-51184, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33141578

ABSTRACT

Precision delivery of theranostic agents to the tumor site is essential to improve their diagnostic and therapeutic efficacy and concurrently minimize adverse effects during treatment. In this study, a novel concept of near-infrared (NIR) light activation of conjugated polymer dots (Pdots) at thermosensitive hydrogel nanostructures is introduced for multimodal imaging-guided synergistic chemo-photothermal therapy. Interestingly, owing to the attractive photothermal conversion efficiency of Pdots, the Pdots@hydrogel as theranostic agents is able to undergo a controllable softening or melting state under the irradiation of NIR laser, resulting in light-triggered drug release in a controlled way and concurrently hydrogel degradation. Besides, the novel Pdots@hydrogel nanoplatform can serve as the theranostic agent for enhanced trimodal photoacoustic (PA)/computed tomography (CT)/fluorescence (FL) imaging-guided synergistic chemo-photothermal therapy of tumors. More importantly, the constructed intelligent nanocomposite Pdots@hydrogel exhibits excellent biodegradability, strong NIR absorption, bright PA/CT/FL signals, and superior tumor ablation effect. Therefore, the concept of a light-controlled multifunctional Pdots@hydrogel that integrates multiple diagnostic/therapeutic modalities into one nanoplatform can potentially be applied as a smart nanotheranostic agent to various perspectives of personalized nanomedicine.


Subject(s)
Biocompatible Materials/chemistry , Nanocomposites/chemistry , Optical Imaging , Photoacoustic Techniques , Polymers/chemistry , Tomography, X-Ray Computed , Animals , Biocompatible Materials/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/chemistry , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Humans , Hydrogels/chemistry , Infrared Rays , Mice , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photothermal Therapy , Thiophenes/chemistry
9.
Mikrochim Acta ; 185(8): 397, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30069640

ABSTRACT

The authors describe a chemical sensor for dopamine (DA). It is based on the use of three-dimensional graphene oxide (3D rGO) loaded with varying amounts of AuPd bimetallic nanoparticles (3D rGO/AuPd NPs). The 3D rGO acts as an effective substrate providing a large surface area and allowing fast electron transfer. The interaction between 3D rGO and surface AuPd NPs increases the activity of the sensing material. These composites were fabricated as the active layer on an indium tin oxide for DA determination. The electrode showed the best performance at a working potential of 0.25 V (vs. the saturated calomel reference electrode) and a scan rate of 100 mVs-1. The best electrode exhibits good sensitivity (4670 µA·mM-1·cm-2), a wide linear response (0.5 µM to 135 µM), and a low detection limit (0.2 µM). It is also selective, easily reproducible, and stable. It was applied to the determination of DA in spiked human serum and in clinical DA hydrochloride injections. The excellent performance of this electrode is attributed to the efficient electron transfer and large specific surface area of 3D rGO and to the high electrocatalytic activity of AuPd NPs due to the synergistic effect between the 3D rGO substrate and the AuPd alloy NPs. Graphical abstract An three-dimensional reduced graphene oxide (3D rGO) foam was loaded with AuPd bimetallic nanoparticles and applied to dopamine (DA) detection in human serum and an injection fluid.

10.
Small ; 14(21): e1800239, 2018 05.
Article in English | MEDLINE | ID: mdl-29682859

ABSTRACT

Nanocavities composed of lipids and block polymers have demonstrated great potential in biomedical applications such as sensors, nanoreactors, and delivery vectors. However, it remains a great challenge to produce nanocavities from fluorescent semiconducting polymers owing to their hydrophobic rigid polymer backbones. Here, we describe a facile, yet general strategy that combines photocrosslinking with nanophase separation to fabricate multicolor, water-dispersible semiconducting polymer nanocavities (PNCs). A photocrosslinkable semiconducting polymer is blended with a porogen such as degradable macromolecule to form compact polymer dots (Pdots). After crosslinking the polymer and removing the porogen, this approach yields semiconducting polymer nanospheres with open cavities that are tunable in diameter. Both small molecules and macromolecules can be loaded in the nanocavities, where molecular size can be differentiated by the efficiency of the energy transfer from host polymer to guest molecules. An anticancer drug doxorubicin (Dox) is loaded into the nanocavities and the intracellular release is monitored in real time by the fluorescence signal. Finally, the efficient delivery of small interfering RNA (siRNA) to silence gene expression without affecting cell viability is demonstrated. The combined features of bright fluorescence, tunable cavity, and efficient drug/siRNA delivery makes these nanostructures promising for biomedical imaging and drug delivery.


Subject(s)
Drug Delivery Systems , Nanostructures/chemistry , Polymers/chemistry , RNA, Small Interfering/administration & dosage , Semiconductors , Cations , Cell Survival , Cross-Linking Reagents/chemistry , HeLa Cells , Humans , Lipids/chemistry , MCF-7 Cells , Molecular Weight , Nanostructures/ultrastructure , Polymers/chemical synthesis , Porosity
11.
J Colloid Interface Sci ; 512: 1-6, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29049896

ABSTRACT

Organic semiconducting materials have attracted significant attention for use in optoelectronic devices, as they can significantly improve device performance. Herein, a donor-acceptor conjugated polymer (poly(isoindigo-thiopheneylbenzothiadiazole, PID-TBT) was synthesized, which has strong and broad absorption in the visible region (400-800nm). The band gap of PID-TBT is 1.65eV. The PID-TBT honeycomb film with a porous structure was easily fabricated by the breath figure method. Compared with the smooth PID-TBT film, the honeycomb film shows significant enhancement in light capture capability and the efficiency of photoelectric conversion. The reflectance of the honeycomb film is reduced by 7% and the photocurrent is tenfold higher than that of the smooth film. Apart from designing new molecules by complex reactions, this work demonstrated that photoelectric conversion can be easily improved by introducing micro or nanostructures into devices.

12.
Biomaterials ; 144: 42-52, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28822291

ABSTRACT

Semiconducting polymers with specific absorption are useful in various applications, including organic optoelectronics, optical imaging, and nanomedicine. However, the optical absorption of a semiconducting polymer with a determined structure is hardly tunable when compared with that of inorganic semiconductors. In this work, we show that the optical absorption of polymer nanoparticles from one conjugated backbone can be effectively tuned through judicious design of the particle morphology and the persistence length of polymers. Highly absorbing near-infrared (NIR) polymers based on diketopyrrolopyrrole-dithiophene (DPP-DT) are synthesized to have different molecular weights (MWs). The DPP-DT polymer with a large molecular weight and high persistence length exhibited remarkably high optical absorption with a peak mass extinction coefficient of 81.7 L g-1 cm-1, which is one of the highest value among various photothermal agents reported to date. Particularly, the polymer nanoparticles with different sizes exhibit broadly tunable NIR absorption peaks from 630 to 811 nm. The PEGylated small polymer dots (Pdots) show good NIR light-harvesting efficiency and high non-radiative decay rates, resulting in a relatively high photothermal conversion efficiency in excess of 50%. Thus, this Pdot-based platform can serve as promising photothermal agents and photoacoustic probes for cancer theranostics.


Subject(s)
Ketones/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/diagnosis , Neoplasms/therapy , Pyrroles/therapeutic use , Theranostic Nanomedicine/methods , Thiophenes/therapeutic use , Animals , Female , HeLa Cells , Humans , Hyperthermia, Induced/methods , Infrared Rays , Ketones/chemistry , MCF-7 Cells , Mice, Inbred ICR , Nanoparticles/chemistry , Optical Imaging/methods , Photoacoustic Techniques/methods , Phototherapy/methods , Pyrroles/chemistry , Thiophenes/chemistry
13.
Nano Lett ; 17(7): 4323-4329, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28613898

ABSTRACT

Light has been widely used for cancer therapeutics such as photodynamic therapy (PDT) and photothermal therapy. This paper describes a strategy called enzyme-enhanced phototherapy (EEPT) for cancer treatment. We constructed a nanoparticle platform by covalent conjugation of glucose oxidase (GOx) to small polymer dots, which could be persistently immobilized into a tumor. While the malignant tumors have high glucose uptake, the GOx efficiently catalyzes the glucose oxidation with simultaneous generation of H2O2. Under light irradiation, the in situ generated H2O2 was photolyzed to produce hydroxyl radical, the most reactive oxygen species, for killing cancer cells. In vitro assays indicated that the cancer cells were destroyed by using a nanoparticle concentration at 0.2 µg/mL and a light dose of ∼120 J/cm2, indicating the significantly enhanced efficiency of the EEPT method when compared to typical PDT that requires a photosensitizer of >10 µg/mL for effective cell killing under the same light dose. Furthermore, remarkable inhibition of tumor growth was observed in xenograft-bearing mice, indicating the promise of the EEPT approach for cancer therapeutics.

14.
ACS Appl Mater Interfaces ; 7(26): 14477-84, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26077019

ABSTRACT

Fingerprint imaging and recognition represent the most important approach in personal identification. Here we designed and synthesized oxetane-functionalized semiconductor polymer dots (Ox-Pdots) for covalent patterning and rapid visualization of latent fingerprints. The high fluorescence brightness, large Stokes shift, and excellent surface properties of the Ox-Pdots lead to fingerprint imaging with high sensitivity and resolution. Fingerprint ridge structures with the first, second, and third levels of details were clearly developed within minutes. The method was facile and robust for visualization of fingerprints on various surfaces including glass, metal, and plastics. Moreover, the oxetane groups in the Ox-Pdots undergo cross-linking reactions induced by a short-time UV irradiation, yielding 3-D intermolecular polymer network. The resulting fingerprint patterns exhibit unparalleled stability against rigorous treatment, as compared to those by traditional Pdots. Our results demonstrate that the Ox-Pdots hold great promise for latent fingerprint imaging and fluorescence anticounterfeiting applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...