Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 474(14): 2315-2332, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28588043

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa3 (CcO) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic CcO, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 (Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi, confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more CcO activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on CcO activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being CcO an essential terminal oxidase.


Subject(s)
Electron Transport Complex IV/metabolism , Heme/analogs & derivatives , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Amino Acid Substitution , Animals , Cell Proliferation , Chlorocebus aethiops , Computational Biology , Databases, Protein , Expert Systems , Gene Knockout Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heme/biosynthesis , Isoenzymes/genetics , Isoenzymes/metabolism , Life Cycle Stages , Mutagenesis, Site-Directed , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism , Protozoan Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Trypanosoma cruzi/cytology , Trypanosoma cruzi/growth & development , Vero Cells
2.
Enzyme Res ; 2011: 873230, 2011.
Article in English | MEDLINE | ID: mdl-21603276

ABSTRACT

Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...