Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(32): 15901-15910, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37609385

ABSTRACT

Hydrogen bonds (HBs) play an important role in the rotational dynamics of organic cations in hybrid organic/inorganic halide perovskites, thus affecting the structural and electronic properties of the perovskites. However, the properties and even the existence of HBs in these perovskites are not well established. In this study, we investigate HBs in perovskites MAPbBr3 (MA+ = CH3NH3+), FAPbI3 (FA+ = CH(NH2)2+), and their solid solution with composition (FAPbI3)7/8(MAPbBr3)1/8, using ab initio molecular dynamics and electronic structure calculations. We consider HBs donated by X-H fragments (X = N and C) of the organic cations and accepted by the halides (Y = Br and I) and characterize their properties based on pair distribution functions and on a combined distribution function of the hydrogen-acceptor distance with the donor-hydrogen-acceptor angle. By analyzing these functions, we establish geometrical criteria for HB existence based on the hydrogen-acceptor (H-Y) distance and donor-hydrogen-acceptor angle (X-H-Y). The distance condition is defined as d(H - Y) < 3 Å for N-H-donated HBs and d(H - Y) < 4 Å for C-H-donated HBs. The angular condition is 135° < (X - H - Y) < 180° for both types of HBs. A HB is considered to be formed when both angular and distance conditions are simultaneously satisfied. At the simulated temperature (350 K), the HBs dynamically break and form. We compute the time correlation functions of HB existence and HB lifetimes, which range between 0.1 and 0.3 ps at that temperature. The analysis of HB lifetimes indicates that N-H-Br bonds are relatively stronger than N-H-I bonds, while C-H-Y bonds are weaker, with a minimal influence from the halide and cation. To evaluate the impact of HBs on the vibrational spectra, we present the power spectrum in the region of N-H and C-H stretching modes, comparing them with the normal mode frequencies of isolated cations. We show that the peaks associated with N-H stretching modes in perovskites are redshifted and asymmetrically deformed, while the C-H peaks do not exhibit these effects.

2.
ACS Omega ; 5(45): 29477-29491, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225179

ABSTRACT

Characterization and control of surfaces and interfaces are critical for photovoltaic and photocatalytic applications. In this work, we propose CH3NH3PbI3 (MAPI) perovskite slab models whose energy levels, free of quantum confinement, explicitly consider the spin-orbit coupling and thermal motion. We detail methodological tools based on the density functional theory that allow achieving these models at an affordable computational cost, and analytical corrections are proposed to correct these effects in other systems. The electronic state energies with respect to the vacuum of the static MAPI surface models, terminated in PbI2 and MAI atomic layers, are in agreement with the experimental data. The PbI2-terminated slab has in-gap surface states, which are independent of the thickness of the slab and also of the orientation of the cation on the surface. The surface states are not useful for alignments in photovoltaic devices, while they could be useful for photocatalytic reactions. The energy levels calculated for the MAI-terminated surface coincide with the widely used values to estimate the MAPI alignment with the charge transport materials, i.e., -5.4 and -3.9 eV for valence band maximum and conduction band minimum, respectively. Our study offers these slab models to provide guidelines for optimal interface engineering.

3.
ACS Appl Mater Interfaces ; 12(40): 44648-44657, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32894942

ABSTRACT

Cuprous oxide has been conceived as a potential alternative to traditional organic hole-transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results do not yet show this trend. More detailed knowledge about the Cu2O/perovskite interface is mandatory to improve the photoconversion efficiency. Using density functional theory calculations, here, we study the interfaces of CH3NH3PbI3 with Cu2O to assess their influence on device performance. Several atomistic models of these interfaces are provided for the first time, considering different compositions of the interface atomic planes. The interface electronic properties are discussed on the basis of the optimal theoretical situation, but in connection with the experimental realizations and device simulations. It is shown that the formation of vacancies in the Cu2O terminating planes is essential to eliminate dangling bonds and trap states. The four interface models that fulfill this condition present a band alignment favorable for photovoltaic conversion. Energy of adhesion and charge transfer across the interfaces are also studied. The termination of CH3NH3PbI3 in PbI2 atomic planes seems optimal to maximize the photoconversion efficiency.

4.
Sci Rep ; 9(1): 9194, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31235745

ABSTRACT

Defect energetics, charge transition levels, and electronic band structures of several Cl-related complexes in CdTe are studied using density-functional theory calculations. We investigate substitutional chlorine (ClTe and ClCd) and complexes formed by ClTe with the cadmium vacancy (ClTe-VCd and 2ClTe-VCd) and the TeCd antisite (ClTe-TeCd). Our calculations show that none of the complexes studied induce deep levels in the CdTe band gap. Moreover, we find that ClTe-VCd and ClTe are the most stable Cl-related centers in n-type and p-type CdTe, under Te-rich growth conditions, showing shallow donor and acceptor properties, respectively. This result suggests that the experimentally-observed Fermi level pinning near midgap would be originated in self-compensation. We also find that the formation of the ClTe-TeCd complex passivates the deep level associated to the Te antisite in neutral charge state.

5.
Sci Rep ; 8(1): 7212, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29725039

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 8(1): 2511, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410466

ABSTRACT

Organic-inorganic hybrid halide perovskites compounds are emerging as new materials with great potential for efficient solar cells. This paper explores the possibility of increasing their photovoltaic efficiency through sub-bandgap absorption by way of the in gap band (IGB) concept. Thus, we assess the formation of an in gap band as well as its effect on the absorption features of Organic-inorganic hybrid halide perovskites CH3NH3PbI3 (MAPI). For this task, we use density functional theory (DFT) as well as many-body perturbation methods along to spin-orbit coupling (SOC) to study structural, energetic and electronic properties of partially Cr-substituted MAPI perovskites (CH3NH3Pb1-xCrxI3). Our results reveal that Cr replacement does not lead to an important cell distortion, while the energetic of the substitution process evidences the possibility of obtaining Cr-substituted perovskite. The analysis of the electronic structure shows that Cr 3d-orbitals induce new electronic states in the host semiconductor bandgap, which fulfill the requirements to be considered as an IGB. Precise many-body perturbation methods in G0W0 approach provided an accurate description on the electronic structures as well as the position of the IGB. In short, Pb replacement by Cr could be useful for improved absorption features through new sub-bandgap transitions across the in gap band.

7.
Phys Chem Chem Phys ; 13(23): 11340-50, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21566817

ABSTRACT

The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...