Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16554755

ABSTRACT

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Subject(s)
Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Evolution , Conserved Sequence , Mass Spectrometry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Proteome/chemistry , Proteomics , Saccharomyces cerevisiae Proteins/chemistry
2.
Plant Biotechnol J ; 2(3): 189-97, 2004 May.
Article in English | MEDLINE | ID: mdl-17147610

ABSTRACT

In order to create a novel mechanism for herbicide resistance in plants, we expressed a single-chain antibody fragment (scFv) in tobacco with specific affinity to the auxinic herbicide picloram. Transgenic tobacco plants and seedlings expressing this scFv against picloram were protected from its effect in a dose-dependent manner. This is the first successful use of an antibody to confer in vivo resistance to a low molecular weight xenobiotic (i.e. < 1000 Da). Our results suggest the possibility for a generic antibody-based approach to create crops resistant to low molecular weight xenobiotics for subsequent use in the bioremediation of contaminated soils, crop protection and as novel selectable markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...