Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Arch Dermatol Res ; 316(6): 326, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822910

ABSTRACT

Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.


Subject(s)
Epigenesis, Genetic , Machine Learning , MicroRNAs , Skin Aging , Skin , Humans , MicroRNAs/genetics , Middle Aged , Aged , Adult , Skin Aging/genetics , Aged, 80 and over , Skin/metabolism , Skin/pathology , Female , Young Adult , Male , Adolescent , Gene Expression Profiling , Biological Clocks/genetics
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339019

ABSTRACT

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Evasion , Immunologic Surveillance , Neoplasms/drug therapy , Neoplasms/genetics
3.
J Transl Med ; 21(1): 344, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221624

ABSTRACT

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Subject(s)
Sepsis , Shock, Septic , Humans , Histones , Critical Illness , Prognosis , Early Diagnosis , Mass Spectrometry
4.
Front Immunol ; 14: 1333705, 2023.
Article in English | MEDLINE | ID: mdl-38235139

ABSTRACT

Introduction: Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods: To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion: Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.


Subject(s)
Sepsis , Shock, Septic , Humans , Shock, Septic/genetics , Epigenome , Critical Illness , Sepsis/genetics , Sepsis/diagnosis , Phenotype , Leukocytes , Immunosuppression Therapy
5.
Cancers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36612180

ABSTRACT

In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.

6.
Article in English | MEDLINE | ID: mdl-33672064

ABSTRACT

The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.


Subject(s)
Frailty , Aged , Aging/genetics , Biomarkers , Epigenesis, Genetic , Frail Elderly , Frailty/diagnosis , Frailty/genetics , Humans , Precision Medicine
7.
Front Immunol ; 12: 622599, 2021.
Article in English | MEDLINE | ID: mdl-33659006

ABSTRACT

Background: Neonatal sepsis is a systemic condition widely affecting preterm infants and characterized by pro-inflammatory and anti-inflammatory responses. However, its pathophysiology is not yet fully understood. Epigenetics regulates the immune system, and its alteration leads to the impaired immune response underlying sepsis. DNA methylation may contribute to sepsis-induced immunosuppression which, if persistent, will cause long-term adverse effects in neonates. Objective: To analyze the methylome of preterm infants in order to determine whether there are DNA methylation marks that may shed light on the pathophysiology of neonatal sepsis. Design: Prospective observational cohort study performed in the neonatal intensive care unit (NICU) of a tertiary care center. Patients: Eligible infants were premature ≤32 weeks admitted to the NICU with clinical suspicion of sepsis. The methylome analysis was performed in DNA from blood using Infinium Human Methylation EPIC microarrays to uncover methylation marks. Results: Methylation differential analysis revealed an alteration of methylation levels in genomic regions involved in inflammatory pathways which participate in both the innate and the adaptive immune response. Moreover, differences between early and late onset sepsis as compared to normal controls were assessed. Conclusions: DNA methylation marks can serve as a biomarker for neonatal sepsis and even contribute to differentiating between early and late onset sepsis.


Subject(s)
Inflammation/genetics , Neonatal Sepsis/genetics , Adaptive Immunity/genetics , Cohort Studies , DNA Methylation , Diagnosis, Differential , Female , Genome , Humans , Immunity, Innate/genetics , Infant, Newborn , Infant, Premature , Male , Neonatal Sepsis/diagnosis , Pilot Projects , Prospective Studies
8.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008715

ABSTRACT

In a prospective study, 48 fetuses were evaluated with Doppler ultrasound after 34 weeks and classified, according to the cerebroplacental ratio (CPR) and estimated fetal weight (EFW), into fetuses with normal growth and fetuses with late-onset fetal growth restriction (LO-FGR). Overexpression of miRNAs from neonatal cord blood belonging to LO-FGR fetuses, was validated by real-time PCR. In addition, functional characterization of overexpressed miRNAs was performed by analyzing overrepresented pathways, gene ontologies, and prioritization of synergistically working miRNAs. Three miRNAs: miR-25-3p, miR-185-5p and miR-132-3p, were significantly overexpressed in cord blood of LO-FGR fetuses. Pathway and gene ontology analysis revealed over-representation of certain molecular pathways associated with cardiac development and neuron death. In addition, prioritization of synergistically working miRNAs highlighted the importance of miR-185-5p and miR-25-3p in cholesterol efflux and starvation responses associated with LO-FGR phenotypes. Evaluation of miR-25-3p; miR-132-3p and miR-185-5p might serve as molecular biomarkers for the diagnosis and management of LO-FGR; improving the understanding of its influence on adult disease.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Signal Transduction/genetics , Fetal Growth Retardation/genetics , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Humans , MicroRNAs/metabolism , Models, Biological , Reproducibility of Results
9.
Bone ; 140: 115563, 2020 11.
Article in English | MEDLINE | ID: mdl-32768685

ABSTRACT

Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.


Subject(s)
Kyphosis , Scoliosis , Adolescent , Artificial Intelligence , Child , Epigenesis, Genetic/genetics , Humans , Scoliosis/etiology , Scoliosis/genetics , Spine
10.
Fetal Diagn Ther ; 47(9): 665-674, 2020.
Article in English | MEDLINE | ID: mdl-32585676

ABSTRACT

OBJECTIVE: It was the aim of this study to describe a micro-RNA (miRNA) profile characteristic of late-onset fetal growth restriction (FGR) and to investigate the pathways involved in their biochemical action. METHODS: In this prospective study, 25 fetuses (16 normal and 9 with FGR [estimated fetal weight <10th centile plus cerebroplacental ratio <0.6765 multiples of the median]) were evaluated with Doppler ultrasound after 36 weeks. Afterwards, for every fetus, plasma from umbilical vein blood was collected at birth, miRNA was extracted, and full miRNA sequencing was performed. Subsequently, comparisons were done in order to obtain those miRNAs that were differentially expressed. RESULTS: The FGR fetuses expressed upregulation of two miRNAs: miR-25-3p and, especially, miR-148b-3p, a miRNA directly involved in Schwann cell migration, neuronal plasticity, and energy metabolism (p = 0.0072, p = 0.0013). CONCLUSIONS: FGR fetuses express a different miRNA profile, which includes overexpression of miR-25-3p and miR-148b-3p. This information might improve our understanding of the pathophysiological processes involved in late-onset FGR. Future validation and feasibility studies will be required to propose miRNAs as a valid tool in the diagnosis and management of FGR.


Subject(s)
Fetal Growth Retardation/metabolism , Fetus/diagnostic imaging , MicroRNAs/metabolism , Case-Control Studies , Female , Fetal Blood , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/genetics , Fetus/metabolism , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , Pregnancy , Prospective Studies , Ultrasonography, Doppler , Ultrasonography, Prenatal
11.
Adv Exp Med Biol ; 1229: 273-285, 2020.
Article in English | MEDLINE | ID: mdl-32285418

ABSTRACT

Coronary artery disease (CAD) is the leading death cause worldwide. Non-coding RNA (ncRNA) are key regulators of genetic expression and thus can affect directly or indirectly the development and progression of different diseases. ncRNA can be classified in several types depending on the length or structure, as long non-coding RNA (lncRNA), microRNA (miRNA) and circularRNA (circRNA), among others. These types of RNA are present within cells or in circulation, and for this reason they have been used as biomarkers of different diseases, therefore revolutionizing precision medicine. Recent research studied the capability of circulating ncRNA to inform about CAD presence and predict the outcome of the disease. In this chapter we present a list of the miRNA, lncRNA and circRNA which are potential biomarkers of CAD.


Subject(s)
Coronary Artery Disease , RNA, Untranslated , Biomarkers , Humans , MicroRNAs , RNA, Circular , RNA, Long Noncoding
12.
Oxid Med Cell Longev ; 2019: 4940825, 2019.
Article in English | MEDLINE | ID: mdl-31814880

ABSTRACT

Diabetes is a disease that can be treated with oral antidiabetic agents and/or insulin. However, patients' metabolic control is inadequate in a high percentage of them and a major cause of chronic diseases like diabetic retinopathy. Approximately 15% of patients have some degree of diabetic retinopathy when diabetes is first diagnosed, and most will have developed this microvascular complication after 20 years. Early diagnosis of the disease is the best tool to prevent or delay vision loss and reduce the involved costs. However, diabetic retinopathy is an asymptomatic disease and its development to advanced stages reduces the effectiveness of treatments. Today, the recommended treatment for severe nonproliferative and proliferative diabetic retinopathy is photocoagulation with an argon laser and intravitreal injections of anti-VEGF associated with, or not, focal laser for diabetic macular oedema. The use of these therapeutic approaches is severely limited, such as uncomfortable administration for patients, long-term side effects, the costs they incur, and the therapeutic effectiveness of the employed management protocols. Hence, diabetic retinopathy is the widespread diabetic eye disease and a leading cause of blindness in adults in developed countries. The growing interest in using polyphenols, e.g., resveratrol, in treatments related to oxidative stress diseases has spread to diabetic retinopathy. This review focuses on analysing the sources and effects of oxidative stress and inflammation on vascular alterations and diabetic retinopathy development. Furthermore, current and antioxidant therapies, together with new molecular targets, are postulated for diabetic retinopathy treatment.


Subject(s)
Diabetic Retinopathy/therapy , Adult , Aged , Diabetic Retinopathy/pathology , Humans , Middle Aged , Oxidative Stress/physiology , Risk Factors , Young Adult
13.
Front Genet ; 10: 621, 2019.
Article in English | MEDLINE | ID: mdl-31316555

ABSTRACT

Epigenetic alterations play a key role in the initiation and progression of cancer. Therefore, it is possible to use epigenetic marks as biomarkers for predictive and precision medicine in cancer. Precision medicine is poised to impact clinical practice, patients, and healthcare systems. The objective of this review is to provide an overview of the epigenetic testing landscape in cancer by examining commercially available epigenetic-based in vitro diagnostic tests for colon, breast, cervical, glioblastoma, lung cancers, and for cancers of unknown origin. We compile current commercial epigenetic tests based on epigenetic biomarkers (i.e., DNA methylation, miRNAs, and histones) that can actually be implemented into clinical practice.

14.
Nutrients ; 12(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892189

ABSTRACT

Oxidative stress generated by diabetes plays a key role in the development of diabetic retinopathy (DR), a common diabetic complication. DR remains asymptomatic until it reaches advanced stages, which complicate its treatment. Although it is known that good metabolic control is essential for preventing DR, knowledge of the disease is incomplete and an effective treatment with no side effects is lacking. Pterostilbene (Pter), a natural stilbene with good antioxidant activity, has proved to beneficially affect different pathologies, including diabetes. Therefore, our study aimed to analyse the protective and/or therapeutic capacity of Pter against oxidant damage by characterising early retinal alterations induced by hyperglycaemia, and its possible mechanism of action in a rabbit model of type 1 diabetes mellitus. Pter reduced lipid and protein oxidative damage, and recovered redox status and the main activities of antioxidant enzymes. Moreover, the redox regulation by Pter was associated with activation of the PI3K/AKT/GSK3ß/NRF2 pathway. Our results show that Pter is a powerful protective agent that may delay early DR development.


Subject(s)
Antioxidants/therapeutic use , Diabetic Retinopathy/prevention & control , Stilbenes/therapeutic use , Animals , Diabetic Retinopathy/etiology , Disease Models, Animal , Enzyme Activation/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Hyperglycemia/complications , Male , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/physiology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rabbits , Signal Transduction/drug effects , Stilbenes/toxicity
15.
Sci Rep ; 8(1): 2646, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422531

ABSTRACT

The aetiology of adolescent idiopathic scoliosis (AIS) has been linked to many factors, such as asymmetric growth, neuromuscular condition, bone strength and genetic background. Recently, epigenetic factors have been proposed as contributors of AIS physiopathology, but information about the molecular mechanisms and pathways involved is scarce. Regarding epigenetic factors, microRNAs (miRNAs) are molecules that contribute to gene expression modulation by regulating important cellular pathways. We herein used Next-Generation Sequencing to discover a series of circulating miRNAs detected in the blood samples of AIS patients, which yielded a unique miRNA biomarker signature that diagnoses AIS with high sensitivity and specificity. We propose that these miRNAs participate in the epigenetic control of signalling pathways by regulating osteoblast and osteoclast differentiation, thus modulating the genetic background of AIS patients. Our study yielded two relevant results: 1) evidence for the deregulated miRNAs that participate in osteoblast/osteoclast differentiation mechanisms in AIS; 2) this miRNA-signature can be potentially used as a clinical tool for molecular AIS diagnosis. Using miRNAs as biomarkers for AIS diagnostics is especially relevant since miRNAs can serve for early diagnoses and for evaluating the positive effects of applied therapies to therefore reduce the need of high-risk surgical interventions.


Subject(s)
Circulating MicroRNA/blood , Scoliosis/genetics , Adolescent , Biomarkers/blood , Circulating MicroRNA/genetics , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Kyphosis/etiology , Kyphosis/genetics , Male , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteogenesis/genetics , Prospective Studies , Scoliosis/blood , Scoliosis/etiology , Scoliosis/pathology , Sensitivity and Specificity
16.
Clin Chem Lab Med ; 55(10): 1474-1477, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28301317

ABSTRACT

Epigenetic modifications represent an interesting landscape which can describe relevant features of human disease. Epigenetic biomarkers show several advantages as disease biomarkers because they provide information about gene function, specific endophenotypes and can even incorporate information from the environment and the natural history of disease. The improvement in genomic and epigenomic technologies has revolutionized the current comprehension of biological processes underlying health and disease. However, now is the time to adopt these new technologies to improve human health, thus converting this information into reliable biomarkers. This endeavor should be focused on improving methodologies to analyze gene methylation, histone modifications and microRNAs. Ideally, epigenetic biomarkers should be robust, routine, accurate and inexpensive in order to provide better information for patient diagnosis, prognosis, stratification and treatment monitoring. Here we describe some challenges and provide strategies to improve the adoption of epigenetic biomarkers into clinical routine. Furthermore, we summarize the recommended properties for clinical epigenetic biomarkers.


Subject(s)
Biomarkers, Tumor/genetics , Epigenomics , Biomarkers, Tumor/metabolism , Chromatin Immunoprecipitation , DNA Methylation , Humans , MicroRNAs/metabolism , Prognosis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...