Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(12): 4698-4704, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31923344

ABSTRACT

An ultra-high increase in the WF of silver, from 4.26 to 7.42 eV, that is, an increase of up to circa 3.1 eV is reported. This is the highest WF increase on record for metals and is supported by recent computational studies which predict the potential ability to affect an increase of the WF of metals by more than 4 eV. We achieved the ultra-high increase by a new approach: Rather than using the common method of 2D adsorption of polar molecules layers on the metal surface, WF modifying components, l-cysteine and Zn(OH)2 , were incorporated within the metal, resulting in a 3D architecture. Detailed material characterization by a large array of analytical methods was carried out, the combination of which points to a WF enhancement mechanism which is based on directly affecting the charge transfer ability of the metal separately by cysteine and hydrolyzed zinc(II), and synergistically by the combination of the two through the known Zn-cysteine finger redox trap effect.

2.
Sci Rep ; 9(1): 11215, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375700

ABSTRACT

The emergence of global antibiotic resistance necessitates the urgent need to develop new and effective antimicrobial agents. Combination of two antimicrobial agents can potentially improve antimicrobial potency and mitigate the development of resistance. Therefore, we have utilized metal molecular doping methodology whereby antimicrobial random peptides mixture (RPMs) are entrapped in a bactericidal copper metal matrix. The copper/RPM composite exhibits greater antimicrobial activity toward methicillin-resistant Staphylococcus aureus (MRSA) than either copper or RPMs alone. Our findings indicate that this bactericidal antimicrobial biomaterial could be utilized to efficiently eradicate antibiotic-resistant pathogenic bacteria for health, agricultural and environmental applications.


Subject(s)
Copper/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Peptides/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Drug Resistance, Microbial/drug effects , Peptides/isolation & purification
3.
ACS Biomater Sci Eng ; 5(5): 2355-2364, 2019 May 13.
Article in English | MEDLINE | ID: mdl-33405785

ABSTRACT

Platinum has been a widely used metal for a variety of implanted medical devices, because of its inertness, low corrosion rate, high biocompatibility, high electric conductivity, and good mechanical stability. A highly desirable property still in need to be addressed is the tailoring of drug-delivery ability to that metal. This is needed in order to treat infections due to the process of implanting, to treat postoperation pain, and to prevent blood clotting. Can Pt itself serve as a delivery matrix? A review on metallic implants (Lyndon, J. A.; Boyd, B. J.; Birbilis, N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J. Control. Release 2014, 179, 63-75) proposes that "Metals themselves can be used for delivering pharmaceutics" but adds that "there has been no current research into [that] possibility" despite its advantages. Here we present a solution to that challenge and show a new method of using an inert metal as a 3D matrix from within which entrapped drug molecules are released. This new type of drug-delivery system is fabricated by the methodolodgy of entrapment of molecules within metals, resulting in various drugs@Pt. Specifically the following drugs have been entrapped and released: the pain-killer and platelet-inhibitor nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and naproxen, the antibiotic ciprofloxacin, and the antiseptic chlorhexidine. The delivery profiles of all biocomposites were studied in two forms, powders and pressed discs, showing, in general, fast followed by slow first order release profiles. It is shown that the delivery kinetics can be tailored by changing the entrapment process, by applying different pressures in the disc preparation, and by changing the delivery temperature. The latter was also used to determine the activation energy for the release. Full characterization of the metallic biomaterials is provided, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX), thermogravimetric analysis (TGA), and surface area/porosity analysis.

4.
Sci Rep ; 7(1): 4161, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646180

ABSTRACT

Matrices for sustained release of drugs have been based on polymers, biomaterials and oxides. The use of the major family of metals as matrices for sustained release is, to the best of our knowledge, unknown. In this context we describe a new family of bio-composites for sustained release of drugs, namely analgesic drugs entrapped within metallic silver. Synthetic methodologies were developed for the preparation of ibuprofen@Ag, naproxen@Ag, tramadol@Ag and bupivacaine@Ag composites. Detailed kinetic analysis of the release of the drugs from within the metal, is provided, demonstrating that metals can indeed serve as reservoirs for drug release. The metal in our case acts not only as a drug releasing source, but also as an antibacterial agent and this property of the composites was studied. Unexpectedly, it was found that the entrapment of the analgesics within silver, dramatically enhances the growth inhibition activity of wild type Pseudomonas aeruginosa, exceeding by far the inhibition activity of the separate components. A mechanism for this interesting observation is provided. The strong antimicrobial activity combined with the analgesic activity open the road for future applications of these materials as dual-purpose components in wound treatment.


Subject(s)
Analgesics/pharmacology , Disinfectants/pharmacology , Drug Liberation , Metals/chemistry , Silver/pharmacology , Analgesics/chemistry , Delayed-Action Preparations , Kinetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Temperature
5.
J Mater Chem B ; 4(24): 4322-4329, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-32263414

ABSTRACT

Although known for its biocidal activity, copper is still not considered as a viable alternative to silver in many of its biocidal applications, mainly because it is generally considered to be a milder antibacterial metal. As copper is much cheaper than silver (1/100), it is potentially more accessible to the health and hygiene needs of third-world countries, to large volume consumer products, and to large-scale agricultural and water treatment needs. Therefore, enhancing the biocidal efficacy of copper is a sought-after goal. We report a method for achieving this goal: by entrapping molecules of the biocidal agent chlorhexidine (CH) within a metallic copper metal powder, using a new materials methodology, the antibacterial efficacy of copper towards two model nosocomial opportunistic bacteria - the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus epidermidis- is enhanced to provide a powerful antibacterial agent exceeding the activity of silver. ICP-MS elemental analysis and UV-spectroscopy indicated that the enhanced bactericidal effects of the synthesized composite, CH@Cu, are associated with the sustained release of both copper ions and CH, giving rise to synergistically enhanced activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...