Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(18): e2210221, 2023 May.
Article in English | MEDLINE | ID: mdl-36811916

ABSTRACT

2D hybrid perovskites are currently in the spotlight of material research for light-harvesting and -emitting applications. It remains extremely challenging, however, to externally control their optical response due to the difficulties of introducing electrical doping. Here, an approach of interfacing ultrathin sheets of perovskites with few-layer graphene and hexagonal boron nitride into gate-tunable, hybrid heterostructures, is demonstrated. It allows for bipolar, continuous tuning of light emission and absorption in 2D perovskites by electrically injecting carriers to densities as high as 1012  cm-2 . This reveals the emergence of both negatively and positively charged excitons, or trions, with binding energies up to 46 meV, among the highest measured for 2D systems. Trions are shown to dominate light emission and propagate with mobilities reaching 200 cm2 V-1 s-1 at elevated temperatures. The findings introduce the physics of interacting mixtures of optical and electrical excitations to the broad family of 2D inorganic-organic nanostructures. The presented strategy to electrically control the optical response of 2D perovskites highlights it as a promising material platform toward electrically modulated light-emitters, externally guided charged exciton currents, and exciton transistors based on layered, hybrid semiconductors.

2.
ACS Nano ; 15(6): 10153-10162, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34003630

ABSTRACT

Recent investigations of two-dimensional (2D) hybrid organic-inorganic halide perovskites (HHPs) indicate that their optical and electronic properties are dominated by strong coupling to thermal fluctuations. While the optical properties of 2D-HHPs have been extensively studied, a comprehensive understanding of electron-phonon interactions is limited because little is known about their structural dynamics. This is partially because the unit cells of 2D-HHPs contain many atoms. Therefore, the thermal fluctuations are complex and difficult to elucidate in detail. To overcome this challenge, we use polarization-orientation Raman spectroscopy and ab initio calculations to compare the structural dynamics of the prototypical 2D-HHPs [(BA)2PbI4 and (PhE)2PbI4] to their three-dimensional (3D) counterpart, MAPbI3. Comparison to the simpler, 3D MAPbI3 crystal shows clear similarities with the structural dynamics of (BA)2PbI4 and (PhE)2PbI4 across a wide temperature range. The analogy between the 3D and 2D crystals allows us to isolate the effect of the organic cation on the structural dynamics of the inorganic scaffold of the 2D-HHPs. Furthermore, using this approach, we uncover the mechanism of the order-disorder phase transition of (BA)2PbI4 (274 K) and show that it involves relaxation of octahedral tilting coupled to anharmonic thermal fluctuations. These anharmonic fluctuations are important because they induce charge carrier localization and affect the optoelectronic performance of these materials.

3.
Nano Lett ; 20(9): 6674-6681, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786939

ABSTRACT

Two-dimensional hybrid perovskites are currently in the spotlight of condensed matter and nanotechnology research due to their intriguing optoelectronic and vibrational properties with emerging potential for light-harvesting and light-emitting applications. While it is known that these natural quantum wells host tightly bound excitons, the mobilities of these fundamental optical excitations at the heart of the optoelectronic applications are barely explored. Here, we directly monitor the diffusion of excitons through ultrafast emission microscopy from liquid helium to room temperature in hBN-encapsulated two-dimensional hybrid perovskites. We find very fast diffusion with characteristic hallmarks of free exciton propagation for all temperatures above 50 K. In the cryogenic regime, we observe nonlinear, anomalous behavior with an exceptionally rapid expansion of the exciton cloud followed by a very slow and even negative effective diffusion. We discuss our findings in view of efficient exciton-phonon coupling, highlighting two-dimensional hybrids as promising platforms for basic research and optoelectronic applications.

4.
J Phys Chem Lett ; 11(15): 5830-5835, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32597181

ABSTRACT

The family of 2D Ruddlesden-Popper perovskites is currently attracting great interest of the scientific community as highly promising materials for energy harvesting and light emission applications. Despite the fact that these materials are known for decades, only recently has it become apparent that their optical properties are driven by the exciton-phonon coupling, which is controlled by the organic spacers. However, the detailed mechanism of this coupling, which gives rise to complex absorption and emission spectra, is the subject of ongoing controversy. In this work we show that the particularly rich, absorption spectra of (PEA)2(CH3NH3)n-1PbnI3n+1 (where PEA stands for phenylethylammonium and n = 1, 2, 3), are related to a vibronic progression of excitonic transition. In contrast to other two-dimensional perovskites, we observe a coupling to a high-energy (40 meV) phonon mode probably related to the torsional motion of the NH3+ head of the organic spacer.

5.
Opt Lett ; 44(21): 5153-5156, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31674954

ABSTRACT

Real-time vibrational microscopy has been recently demonstrated by various techniques, most of them utilizing the well-known schemes of coherent anti-stokes Raman scattering and stimulated Raman scattering. These techniques readily provide valuable chemical information mostly in the higher vibrational frequency regime (>400 cm-1). Addressing the low vibrational frequency regime (<200 cm-1) is challenging due to the usage of spectral filters that are required to isolate the signal from the Rayleigh scattered excitation field. In this Letter, we report on rapid, high-resolution, low-frequency (<130 cm-1) vibrational microscopy using impulsive coherent Raman excitation. By combining impulsive excitation with a fast acousto-optic delay line, we detect the Raman-induced optical Kerr lensing and spectral shift effects with a 25 µs pixel dwell time to produce shot-noise limited, low-frequency hyper-spectral images of various samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...