Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37566734

ABSTRACT

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Synaptic Transmission/physiology , Glutamic Acid/pharmacology , Brain/metabolism
2.
J Pharmacol Exp Ther ; 379(1): 41-52, 2021 10.
Article in English | MEDLINE | ID: mdl-34493631

ABSTRACT

We describe a clinical candidate molecule from a new series of glutamate N-methyl-d-aspartate receptor subunit 2B-selective inhibitors that shows enhanced inhibition at extracellular acidic pH values relative to physiologic pH. This property should render these compounds more effective inhibitors of N-methyl-d-aspartate receptors at synapses responding to a high frequency of action potentials, since glutamate-containing vesicles are acidic within their lumen. In addition, acidification of penumbral regions around ischemic tissue should also enhance selective drug action for improved neuroprotection. The aryl piperazine we describe here shows strong neuroprotective actions with minimal side effects in preclinical studies. The clinical candidate molecule NP10679 has high oral bioavailability with good brain penetration and is suitable for both intravenous and oral dosing for therapeutic use in humans. SIGNIFICANCE STATEMENT: This study identifies a new series of glutamate N-methyl-d-aspartate (NMDA) receptor subunit 2B-selective negative allosteric modulators with properties appropriate for clinical advancement. The compounds are more potent at acidic pH, associated with ischemic tissue, and this property should increase the therapeutic safety of this class by improving efficacy in affected tissue while sparing NMDA receptor block in healthy brain.


Subject(s)
Brain/drug effects , Brain/metabolism , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Acids , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Female , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Xenopus laevis
3.
ACS Chem Neurosci ; 12(1): 79-98, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33326224

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Allosteric Regulation , Models, Molecular , Receptors, N-Methyl-D-Aspartate/metabolism
4.
J Med Chem ; 63(14): 7569-7600, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32538088

ABSTRACT

The N-methyl-d-aspartate receptor (NMDAR) is an ion channel that mediates the slow, Ca2+-permeable component of glutamatergic synaptic transmission in the central nervous system (CNS). NMDARs are known to play a significant role in basic neurological functions, and their dysfunction has been implicated in several CNS disorders. Herein, we report the discovery of second-generation GluN2C/D-selective NMDAR-positive allosteric modulators (PAMs) with a dihydropyrrolo[1,2-a]pyrazin-3(4H)-one core. The prototype, R-(+)-EU-1180-453, exhibits log unit improvements in the concentration needed to double receptor response, lipophilic efficiency, and aqueous solubility, and lowers cLogP by one log unit compared to the first-generation prototype CIQ. Additionally, R-(+)-EU-1180-453 was found to increase glutamate potency 2-fold, increase the response to maximally effective concentration of agonist 4-fold, and the racemate is brain-penetrant. These compounds are useful second-generation in vitro tools and a promising step toward in vivo tools for the study of positive modulation of GluN2C- and GluN2D-containing NMDA receptors.


Subject(s)
Pyrazines/pharmacology , Pyrroles/pharmacology , Receptors, N-Methyl-D-Aspartate/agonists , Allosteric Regulation , Animals , Drug Design , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Male , Mice, Inbred C57BL , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Structure-Activity Relationship , Xenopus laevis
5.
Neuropharmacology ; 176: 108117, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32389749

ABSTRACT

NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Organ Culture Techniques , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Xenopus laevis
6.
Nat Chem Biol ; 16(2): 188-196, 2020 02.
Article in English | MEDLINE | ID: mdl-31959964

ABSTRACT

Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. Here we describe a new class of positive allosteric modulators of N-methyl D-aspartate receptors (NMDARs) that mediate a calcium-permeable component of glutamatergic synaptic transmission and play essential roles in learning, memory and cognition, as well as neurological disease. EU1622-14 increases agonist potency and channel-open probability, slows receptor deactivation and decreases both single-channel conductance and calcium permeability. The unique functional selectivity of this chemical probe reveals a mechanism for enhancing NMDAR function while limiting excess calcium influx, and shows that allosteric modulators can act as biased modulators of ion-channel permeation.


Subject(s)
Pyrrolidines/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Animals , Calcium/metabolism , Cells, Cultured , Female , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glycine/metabolism , Glycine/pharmacology , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Ion Channel Gating/drug effects , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Oocytes/drug effects , Oocytes/physiology , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus laevis
7.
ACS Med Chem Lett ; 10(3): 248-254, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891121

ABSTRACT

The N-methyl-d-aspartate receptor plays a critical role in central nervous system processes. Its diverse properties, as well as hypothesized role in neurological disease, render NMDA receptors a target of interest for the development of therapeutically relevant modulators. A number of subunit-selective modulators have been reported in the literature, one of which is TCN-201, a GluN2A-selective negative allosteric modulator. Recently, it was determined from a cocrystallization study of TCN-201 with the NMDA receptor that a unique active pose exists in which the sulfonamide group of TCN-201 incorporates a π-π stacking interaction between the two adjacent aryl rings that allows it to make important contacts with the protein. This finding led us to investigate whether this unique structural feature of the diaryl sulfonamide could be incorporated into other modulators that act on distinct pockets. To test whether this idea might have more general utility, we added an aryl ring plus the sulfonamide linker modification to a previously published series of GluN2C- and GluN2D-selective negative allosteric modulators that bind to an entirely different pocket. Herein, we report data suggesting that this structural modification of the NAB-14 series of modulators was tolerated and, in some instances, enhanced potency. These results suggest that this motif may be a reliable means for introducing a π-π stacking element to molecular scaffolds that could improve activity if it allowed access to ligand-protein interactions not accessible from one planar aromatic group.

8.
Mol Pharmacol ; 93(2): 141-156, 2018 02.
Article in English | MEDLINE | ID: mdl-29242355

ABSTRACT

N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation , Animals , Binding Sites , Excitatory Amino Acid Agents/pharmacology , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Patch-Clamp Techniques , Protein Conformation , Proton Magnetic Resonance Spectroscopy , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/drug effects , Reproducibility of Results , Stereoisomerism , Xenopus laevis
9.
ACS Chem Neurosci ; 9(2): 306-319, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29043770

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory synaptic transmission and have been implicated in numerous neurological disorders. NMDARs typically comprise two GluN1 and two GluN2 subunits. The four GluN2 subtypes (GluN2A-GluN2D) have distinct functional properties and gene expression patterns, which contribute to diverse functional roles for NMDARs in the brain. Here, we present a series of GluN2C/2D-selective negative allosteric modulators built around a N-aryl benzamide (NAB) core. The prototypical compound, NAB-14, is >800-fold selective for recombinant GluN2C/GluN2D over GluN2A/GluN2B in Xenopus oocytes and has an IC50 value of 580 nM at recombinant GluN2D-containing receptors expressed in mammalian cells. NAB-14 inhibits triheteromeric (GluN1/GluN2A/GluN2C) NMDARs with modestly reduced potency and efficacy compared to diheteromeric (GluN1/GluN2C/GluN2C) receptors. Site-directed mutagenesis suggests that structural determinants for NAB-14 inhibition reside in the GluN2D M1 transmembrane helix. NAB-14 inhibits GluN2D-mediated synaptic currents in rat subthalamic neurons and mouse hippocampal interneurons, but has no effect on synaptic transmission in hippocampal pyramidal neurons, which do not express GluN2C or GluN2D. This series possesses some druglike physical properties and modest brain permeability in rat and mouse. Altogether, this work identifies a new series of negative allosteric modulators that are valuable tools for studying GluN2C- and GluN2D-containing NMDAR function in brain circuits, and suggests that the series has the potential to be developed into therapies for selectively modulating brain circuits involving the GluN2C and GluN2D subunits.


Subject(s)
Benzamides/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Interneurons/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Allosteric Regulation , Animals , Benzamides/chemistry , Excitatory Amino Acid Antagonists/chemistry , Female , HEK293 Cells , Hippocampus/metabolism , Humans , Interneurons/metabolism , Male , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Oocytes , Protein Structure, Secondary , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Tissue Culture Techniques , Xenopus laevis
10.
J Med Chem ; 60(13): 5556-5585, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28586221

ABSTRACT

We have identified a series of positive allosteric NMDA receptor (NMDAR) modulators derived from a known class of GluN2C/D-selective tetrahydroisoquinoline analogues that includes CIQ. The prototypical compound of this series contains a single isopropoxy moiety in place of the two methoxy substituents present in CIQ. Modifications of this isopropoxy-containing scaffold led to the identification of analogues with enhanced activity at the GluN2B subunit. We identified molecules that potentiate the response of GluN2B/GluN2C/GluN2D, GluN2B/GluN2C, and GluN2C/GluN2D-containing NMDARs to maximally effective concentrations of agonist. Multiple compounds potentiate the response of NMDARs with submicromolar EC50 values. Analysis of enantiomeric pairs revealed that the S-(-) enantiomer is active at the GluN2B, GluN2C, and/or GluN2D subunits, whereas the R-(+) enantiomer is only active at GluN2C/D subunits. These results provide a starting point for the development of selective positive allosteric modulators for GluN2B-containing receptors.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Tetrahydroisoquinolines/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tetrahydroisoquinolines/administration & dosage , Tetrahydroisoquinolines/chemistry
11.
ACS Med Chem Lett ; 7(5): 537-42, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190606

ABSTRACT

The orally bioavailable 1-deoxy-sphingosine analog, Enigmol, has demonstrated anticancer activity in numerous in vivo settings. However, as no Enigmol analog with enhanced potency in vitro has been identified, a new strategy to improve efficacy in vivo by increasing tumor uptake was adopted. Herein, synthesis and biological evaluation of two novel fluorinated Enigmol analogs, CF3-Enigmol and CF2-Enigmol, are reported. Each analog was equipotent to Enigmol in vitro, but achieved higher plasma and tissue levels than Enigmol in vivo. Although plasma and tissue exposures were anticipated to trend with fluorine content, CF2-Enigmol absorbed into tissue at strikingly higher concentrations than CF3-Enigmol. Using mouse xenograft models of prostate cancer, we also show that CF3-Enigmol underperformed Enigmol-mediated inhibition of tumor growth and elicited systemic toxicity. By contrast, CF2-Enigmol was not systemically toxic and demonstrated significantly enhanced antitumor activity as compared to Enigmol.

12.
Neuron ; 85(6): 1305-1318, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25728572

ABSTRACT

Stroke remains a significant problem despite decades of work on neuroprotective strategies. NMDA receptor (NMDAR) antagonists are neuroprotective in preclinical models, but have been clinically unsuccessful, in part due to side effects. Here we describe a prototypical GluN2B-selective antagonist with an IC50 value that is 10-fold more potent at acidic pH 6.9 associated with ischemic tissue compared to pH 7.6, a value close to the pH in healthy brain tissue. This should maximize neuroprotection in ischemic tissue while minimizing on-target side effects associated with NMDAR blockade in noninjured brain regions. We have determined the mechanism underlying pH-dependent inhibition and demonstrate the utility of this approach in vivo. We also identify dicarboxylate dimers as a novel proton sensor in proteins. These results provide insight into the molecular basis of pH-dependent neuroprotective NMDAR block, which could be beneficial in a wide range of neurological insults associated with tissue acidification.


Subject(s)
Hydrogen-Ion Concentration , Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Humans , Hydrogen-Ion Concentration/drug effects , Male , Mice, Inbred C57BL , Neuroprotective Agents/toxicity , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Stroke/drug therapy , Stroke/metabolism
13.
ACS Med Chem Lett ; 3(1): 43-7, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-24900369

ABSTRACT

Plasmodium-infected erythrocytes have been shown to employ sphingolipids from both endogenous metabolism as well as existing host pools. Therapeutic agents that limit these supplies have thus emerged as intriguing, mechanistically distinct putative targets for the treatment of malaria infections. In an initial screen of our library of sphingolipid pathway modulators for efficacy against two strains of the predominant human malaria species Plasmodium falciparum and Plasmodium knowlesi, a series of orally available, 1-deoxysphingoid bases were found to possess promising in vitro antimalarial activity. To better understand the structural requirements that are necessary for this observed activity, a second series of modified analogues were prepared and evaluated. Initial pharmacokinetic assessments of key analogues were investigated to evaluate plasma and red blood cell concentrations in vivo.

14.
ACS Med Chem Lett ; 2(6): 438-43, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-24900327

ABSTRACT

Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind-Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.

15.
Pharmacol Res ; 47(5): 373-81, 2003 May.
Article in English | MEDLINE | ID: mdl-12676511

ABSTRACT

The sphingoid base backbones of sphingolipids (sphingosines, sphinganines, 4-hydroxysphinganines and others) are highly bioactive species directly and-in most cases-as their metabolites, the N-acyl-sphingoid bases (ceramides) and sphingoid base 1-phosphates. The complexity of these compounds affords many opportunities to prepare synthetic analogs for studies of sphingolipid metabolism and the functions of the sphingoid bases and metabolites. Described in this review are methods for the preparation of libraries of sphingoid bases, including a series of 1-deoxy-analogs, as well as information about their metabolism and biological activities. Findings with these compounds have uncovered some of the complications of working with compounds that mimic a naturally occurring biomodulator-such as that they are sometimes metabolized by enzymes that handle the endogenous compounds and the products may have potent (and unexpected) biological activities. Through studying such compounds, there is now a greater understanding of the metabolism and mechanism(s) of action of naturally occurring sphingoid bases as well as of these analogs.


Subject(s)
Sphingolipids/chemical synthesis , Sphingosine/pharmacology , Animals , Ceramides/chemical synthesis , Drug Design , Female , Humans , In Vitro Techniques , Sphingolipids/chemistry , Sphingolipids/pharmacology , Sphingolipids/therapeutic use , Sphingosine/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...