Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Metab Eng ; 81: 273-285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145748

ABSTRACT

Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.


Subject(s)
Metabolic Networks and Pathways , Systems Biology , Cricetinae , Animals , CHO Cells , Cricetulus , Metabolic Networks and Pathways/genetics , Proteins
2.
Dev Cell ; 58(17): 1593-1609.e9, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37473757

ABSTRACT

Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.


Subject(s)
RNA, Ribosomal , Ribosomes , Humans , Animals , Mice , Methylation , Ribosomes/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Cell Differentiation , Neurogenesis/genetics , Ribosomal Proteins/metabolism
3.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-37205389

ABSTRACT

Understanding protein secretion has considerable importance in the biotechnology industry and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer protein secretion capabilities from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can be used to predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.

4.
Nat Struct Mol Biol ; 28(11): 889-899, 2021 11.
Article in English | MEDLINE | ID: mdl-34759377

ABSTRACT

Ribosomes are complex ribozymes that interpret genetic information by translating messenger RNA (mRNA) into proteins. Natural variation in ribosome composition has been documented in several organisms and can arise from several different sources. A key question is whether specific control over ribosome heterogeneity represents a mechanism by which translation can be regulated. We used RiboMeth-seq to demonstrate that differential 2'-O-methylation of ribosomal RNA (rRNA) represents a considerable source of ribosome heterogeneity in human cells, and that modification levels at distinct sites can change dynamically in response to upstream signaling pathways, such as MYC oncogene expression. Ablation of one prominent methylation resulted in altered translation of select mRNAs and corresponding changes in cellular phenotypes. Thus, differential rRNA 2'-O-methylation can give rise to ribosomes with specialized function. This suggests a broader mechanism where the specific regulation of rRNA modification patterns fine tunes translation.


Subject(s)
Protein Biosynthesis/physiology , Proto-Oncogene Proteins c-myc/genetics , RNA Processing, Post-Transcriptional/physiology , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Methylation , Protein Processing, Post-Translational/physiology , Proto-Oncogene Proteins c-myc/biosynthesis , RNA, Messenger/genetics
5.
Sci Rep ; 9(1): 8827, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222165

ABSTRACT

Viral contamination in biopharmaceutical manufacturing can lead to shortages in the supply of critical therapeutics. To facilitate the protection of bioprocesses, we explored the basis for the susceptibility of CHO cells to RNA virus infection. Upon infection with certain ssRNA and dsRNA viruses, CHO cells fail to generate a significant interferon (IFN) response. Nonetheless, the downstream machinery for generating IFN responses and its antiviral activity is intact in these cells: treatment of cells with exogenously-added type I IFN or poly I:C prior to infection limited the cytopathic effect from Vesicular stomatitis virus (VSV), Encephalomyocarditis virus (EMCV), and Reovirus-3 virus (Reo-3) in a STAT1-dependent manner. To harness the intrinsic antiviral mechanism, we used RNA-Seq to identify two upstream repressors of STAT1: Gfi1 and Trim24. By knocking out these genes, the engineered CHO cells exhibited activation of cellular immune responses and increased resistance to the RNA viruses tested. Thus, omics-guided engineering of mammalian cell culture can be deployed to increase safety in biotherapeutic protein production among many other biomedical applications.


Subject(s)
CHO Cells/virology , Genetic Engineering , Host-Pathogen Interactions/immunology , Immunity, Innate , Industrial Microbiology , Animals , Biomarkers , Cricetulus , Drug Resistance/immunology , Genetic Engineering/methods , Interferon Type I , Poly I-C/immunology , RNA Viruses/immunology , STAT1 Transcription Factor , Signal Transduction , Virus Replication
6.
Curr Res Biotechnol ; 1: 49-57, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32577618

ABSTRACT

Most therapeutic monoclonal antibodies in biopharmaceutical processes are produced in Chinese hamster ovary (CHO) cells. Technological advances have rendered the selection procedure for higher producers a robust protocol. However, information on molecular mechanisms that impart the property of hyper-productivity in the final selected clones is currently lacking. In this study, an IgG-producing industrial cell line and its methotrexate (MTX)-amplified progeny cell line were analyzed using transcriptomic, proteomic, phosphoproteomic, and chromatin immunoprecipitation (ChIP) techniques. Computational prediction of transcription factor binding to the transgene cytomegalovirus (CMV) promoter by the Transcription Element Search System and upstream regulator analysis of the differential transcriptomic data suggested increased in vivo CMV promoter-cAMP response element binding protein (CREB1) interaction in the higher producing cell line. Differential nuclear proteomic analysis detected 1.3-fold less CREB1 in the nucleus of the high productivity cell line compared with the parental cell line. However, the differential abundance of multiple CREB1 phosphopeptides suggested an increase in CREB1 activity in the higher producing cell line, which was confirmed by increased association of the CMV promotor with CREB1 in the high producer cell line. Thus, we show here that the nuclear proteome and phosphoproteome have an important role in regulating final productivity of recombinant proteins from CHO cells, and that CREB1 may play a role in transcriptional enhancement. Moreover, CREB1 phosphosites may be potential targets for cell engineering for increased productivity.

7.
Nat Commun ; 5: 3394, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24598821

ABSTRACT

During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation has an impact on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites, and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phospho-mimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signalling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication , Histones/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Binding Sites/genetics , Blotting, Western , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , HeLa Cells , Humans , Mass Spectrometry , Microscopy, Confocal , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA Interference , S Phase/genetics
8.
Nat Cell Biol ; 16(3): 281-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24561620

ABSTRACT

To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins, and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance.


Subject(s)
Chromatin/metabolism , DNA Replication , Proteome/metabolism , Receptors, Virus/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/isolation & purification , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/isolation & purification , DNA-Binding Proteins/metabolism , HeLa Cells , Histones/isolation & purification , Histones/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , Protein Transport , Proteome/isolation & purification , Proteomics , S Phase Cell Cycle Checkpoints
9.
EMBO J ; 31(8): 2013-23, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22407294

ABSTRACT

Efficient supply of new histones during DNA replication is critical to restore chromatin organization and maintain genome function. The histone chaperone anti-silencing function 1 (Asf1) serves a key function in providing H3.1-H4 to CAF-1 for replication-coupled nucleosome assembly. We identify Codanin-1 as a novel interaction partner of Asf1 regulating S-phase histone supply. Mutations in Codanin-1 can cause congenital dyserythropoietic anaemia type I (CDAI), characterized by chromatin abnormalities in bone marrow erythroblasts. Codanin-1 is part of a cytosolic Asf1-H3.1-H4-Importin-4 complex and binds directly to Asf1 via a conserved B-domain, implying a mutually exclusive interaction with the chaperones CAF-1 and HIRA. Codanin-1 depletion accelerates the rate of DNA replication and increases the level of chromatin-bound Asf1, suggesting that Codanin-1 guards a limiting step in chromatin replication. Consistently, ectopic Codanin-1 expression arrests S-phase progression by sequestering Asf1 in the cytoplasm, blocking histone delivery. We propose that Codanin-1 acts as a negative regulator of Asf1 function in chromatin assembly. This function is compromised by two CDAI mutations that impair complex formation with Asf1, providing insight into the molecular basis for CDAI disease.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication , Glycoproteins/metabolism , Histones/metabolism , S Phase , Amino Acid Sequence , Anemia, Dyserythropoietic, Congenital/genetics , Chromosomes/metabolism , Glycoproteins/genetics , HeLa Cells , Humans , Models, Biological , Molecular Chaperones , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Nuclear Proteins , Protein Binding , Protein Interaction Mapping
10.
J Cell Biol ; 190(5): 731-40, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20805324

ABSTRACT

In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate-dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21(Cip1) accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage.


Subject(s)
Chromatin/metabolism , DNA Damage/physiology , DNA Repair , Signal Transduction/genetics , Autoantigens/genetics , Autoantigens/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Chromatin/genetics , Chromosomes/metabolism , DNA/genetics , DNA/metabolism , DNA Breaks, Double-Stranded , Genes, cdc , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Radiation, Ionizing , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism
11.
BMC Plant Biol ; 10: 82, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20444255

ABSTRACT

BACKGROUND: Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. RESULTS: For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM) containing TDZ (0.5 mg l(-1)). Germination of unorganized mass callus such as protocorm -like structure (PLS) arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l(-1)) and TDZ (0.5 mg l(-1)). These calli were maintained by subculturing on BM containing IAA (0.5 mg l(-1)) and TDZ (0.3 mg l(-1)) during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l(-1)). By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS) analysis revealed that 15 protein spots are significantly expressed (P < 0.05) at earlier stages of shoot differentiation. The majority of these proteins are involved in amino acid-protein metabolism and photosynthetic activity. In accordance with proteomic analysis, metabolic profiling using 1D and 2D NMR techniques showed the importance of numerous compounds related with sugar mobilization and nitrogen metabolism. NMR analysis techniques also allowed the identification of some secondary metabolites such as phenolic compounds whose accumulation was enhanced during shoot differentiation. CONCLUSION: The subculture of embryogenic/organogenic calli onto shoot differentiation medium triggers the stimulation of cell metabolism principally at three levels namely (i) initiation of photosynthesis, glycolysis and phenolic compounds synthesis; (ii) amino acid-protein synthesis, and protein stabilization; (iii) sugar degradation. These biochemical mechanisms associated with the initiation of shoot formation during protocorm-like body (PLB) organogenesis could be coordinated by the removal of TDZ in callus maintenance medium. These results might contribute to elucidate the complex mechanism that leads to vanilla callus differentiation and subsequent shoot formation into PLB organogenesis. Moreover, our results highlight an early intermediate metabolic event in vanillin biosynthetic pathway with respect to secondary metabolism. Indeed, for the first time in vanilla tissue culture, phenolic compounds such as glucoside A and glucoside B were identified. The degradation of these compounds in specialized tissue (i.e. young green beans) probably contributes to the biosynthesis of glucovanillin, the parent compound of vanillin.


Subject(s)
Metabolome , Plant Shoots/growth & development , Proteome , Tissue Culture Techniques , Vanilla/growth & development , Culture Media , Plant Shoots/metabolism , Vanilla/metabolism
12.
Cell ; 136(3): 435-46, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203579

ABSTRACT

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Subject(s)
Chromosomes/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Structure, Tertiary , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
13.
BMC Genet ; 6: 8, 2005 Feb 16.
Article in English | MEDLINE | ID: mdl-15715908

ABSTRACT

BACKGROUND: In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. RESULTS: Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. CONCLUSION: Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.


Subject(s)
Chitin/biosynthesis , Multienzyme Complexes/genetics , Saccharomyces cerevisiae/genetics , Cell Wall/genetics , Chitin Synthase/genetics , Mutation , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
14.
Genetics ; 167(1): 35-49, 2004 May.
Article in English | MEDLINE | ID: mdl-15166135

ABSTRACT

Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.


Subject(s)
Peptides, Cyclic/pharmacology , Saccharomyces cerevisiae/metabolism , beta-Glucans/chemistry , Antifungal Agents/pharmacology , Biochemistry/methods , Biological Transport , Caspofungin , Cell Cycle , Cell Survival , Cell Wall/chemistry , Chitin/chemistry , Cytoskeleton/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Fungal , Drug Resistance, Multiple , Echinocandins , Gene Deletion , Genes, Fungal , Genotype , Glucans/chemistry , Glucans/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Haploidy , Ions , Lipopeptides , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Models, Biological , Mutation , Oligonucleotide Array Sequence Analysis , Peptides, Cyclic/chemistry , Phenotype , Protein Binding , Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Time Factors , Transcription Factors , Transcription, Genetic , Ubiquitin/metabolism , beta-Glucans/metabolism
15.
Science ; 303(5659): 808-13, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14764870

ABSTRACT

A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.


Subject(s)
Genes, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Computational Biology , Cystic Fibrosis/genetics , Gene Deletion , Genes, Essential , Genetic Diseases, Inborn/genetics , Genotype , Humans , Molecular Sequence Data , Multifactorial Inheritance , Mutation , Phenotype , Polymorphism, Genetic , Retinitis Pigmentosa/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
16.
Microbiology (Reading) ; 149(Pt 9): 2487-2499, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12949174

ABSTRACT

Mid2p is a plasma membrane protein that functions in Saccharomyces cerevisiae as a sensor of cell wall stress, activating the PKC1-MPK1 cell integrity pathway via the small GTPase Rho1p during exposure to mating pheromone, calcofluor white, and heat. To examine Mid2p signalling, a global synthetic interaction analysis of a mid2 mutant was performed; this identified 11 interacting genes. These include WSC1 and ROM2, upstream elements in cell integrity pathway signalling, and FKS1 and SMI1, required for 1,3-beta-glucan synthesis. These synthetic interactions indicate that the Wsc1p sensor acts through Rom2p to activate the Fks1p glucan synthase in a Mid2p-independent way. To further explore Mid2p signalling a two-hybrid screen was done using the cytoplasmic tail of Mid2p; this identified ZEO1 (YOL109w), encoding a 12 kDa peripheral membrane protein that localizes to the plasma membrane. Disruption of ZEO1 leads to resistance to calcofluor white and to a Mid2p-dependent constitutive phosphorylation of Mpk1p, supporting a role for Zeo1p in the cell integrity pathway. Consistent with this, zeo1-deficient cells suppress the growth defect of mutants in the Rho1p GDP-GTP exchange factor Rom2p, while exacerbating the growth defect of sac7delta mutants at 37 degrees C. In contrast, mid2delta mutants have opposing effects to zeo1delta mutants, being synthetically lethal with rom2delta, and suppressing an 18 degrees C growth defect of sac7delta, while overexpression of MID2 rescues a rom2delta 37 degrees C growth defect. Thus, MID2 and ZEO1 appear to play reciprocal roles in the modulation of the yeast PKC1-MPK1 cell integrity pathway.


Subject(s)
Calcium-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Signal Transduction
17.
Genetics ; 163(3): 875-94, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12663529

ABSTRACT

Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.


Subject(s)
Fungal Proteins/toxicity , Genome, Fungal , Mycotoxins/toxicity , Saccharomyces cerevisiae/genetics , beta-Glucans , Cell Wall/chemistry , Gene Expression Regulation, Fungal , Glucans/genetics , Glucans/metabolism , Killer Factors, Yeast , Mutagenesis , Open Reading Frames , Phenotype , Ribosomes/genetics , Saccharomyces cerevisiae/drug effects , Sequence Deletion
18.
Nature ; 418(6896): 387-91, 2002 Jul 25.
Article in English | MEDLINE | ID: mdl-12140549

ABSTRACT

Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.


Subject(s)
Gene Deletion , Genome, Fungal , Proteome/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Size , Cluster Analysis , Culture Media/pharmacology , Galactose/pharmacology , Gene Expression Profiling , Genes, Fungal , Hydrogen-Ion Concentration , Nystatin/pharmacology , Open Reading Frames/genetics , Osmolar Concentration , Phenotype , Proteome/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Selection, Genetic , Sorbitol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...