Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Tuberculosis (Edinb) ; 95(5): 589-98, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26073894

ABSTRACT

DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , DNA Topoisomerases, Type I , Drug Discovery , Mycobacterium tuberculosis/drug effects , Topoisomerase I Inhibitors/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Gene Expression Regulation, Bacterial , Gene Knockdown Techniques , Genotype , Humans , Microbial Viability , Molecular Targeted Therapy , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Phenotype , Time Factors
2.
Bioorg Med Chem Lett ; 25(16): 3234-45, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26087937

ABSTRACT

Whole cell based screens to identify hits against Mycobacterium tuberculosis (Mtb), carried out under replicating and non-replicating (NRP) conditions, resulted in the identification of multiple, novel but structurally related spiropiperidines with potent antitubercular properties. These compounds could be further classified into three classes namely 3-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[indene-1,4'-piperidine] (abbr. spiroindenes), 4-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[chromene-2,4'-piperidine] (abbr. spirochromenes) and 1'-benzylspiro[indole-1,4'-piperidin]-2(1H)-one (abbr. spiroindolones). Spiroindenes showed ⩾ 4 log10 kill (at 2-12 µM) on replicating Mtb, but were moderately active under non replicating conditions. Whole genome sequencing efforts of spiroindene resistant mutants resulted in the identification of I292L mutation in MmpL3 (Mycobacterial membrane protein Large), required for the assembly of mycolic acid into the cell wall core of Mtb. MIC modulation studies demonstrated that the mutants were cross-resistant to spirochromenes but not to spiroindolones. This Letter describes lead identification efforts to improve potency while reducing the lipophilicity and hERG liabilities of spiroindenes. Additionally, as deduced from the SAR studies, we provide insights regarding the new chemical opportunities that the spiroindolones can offer to the TB drug discovery initiatives.


Subject(s)
Antitubercular Agents/pharmacology , Piperidines/pharmacology , Spiro Compounds/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacokinetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Genome, Bacterial , High-Throughput Screening Assays , Hypoxia , Lipids/chemistry , Matrix Metalloproteinase 13/biosynthesis , Matrix Metalloproteinase 13/genetics , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Structure-Activity Relationship
3.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
4.
J Med Chem ; 57(15): 6642-52, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25007124

ABSTRACT

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


Subject(s)
Aminopyridines/chemistry , Antimalarials/chemistry , Benzimidazoles/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Hepatocytes/metabolism , Humans , Malaria/drug therapy , Malaria/mortality , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 5(7): 820-5, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050172

ABSTRACT

Type II topoisomerases are well conserved across the bacterial species, and inhibition of DNA gyrase by fluoroquinolones has provided an attractive option for treatment of tuberculosis (TB). However, the emergence of fluoroquinolone-resistant strains of Mycobacterium tuberculosis (Mtb) poses a threat for its sustainability. A scaffold hopping approach using the binding mode of novel bacterial topoisomerase inhibitors (NBTIs) led to the identification of a novel class of benzimidazoles as DNA gyrase inhibitors with potent anti-TB activity. Docking of benzimidazoles to a NBTI bound crystal structure suggested that this class of compound makes key contacts in the enzyme active site similar to the reported NBTIs. This observation was further confirmed through the measurement of DNA gyrase inhibition, and activity against Mtb strains harboring mutations that confer resistance to aminopiperidines based NBTIs and Mtb strains resistant to moxifloxacin. Structure-activity relationship modification at the C-7 position of the left-hand side ring provided further avenue to improve hERG selectivity for this chemical series that has been the major challenges for NBTIs.

6.
J Med Chem ; 57(11): 4889-905, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24809953

ABSTRACT

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.


Subject(s)
Antitubercular Agents/chemical synthesis , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Piperidines/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Acute Disease , Administration, Oral , Animals , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Availability , Chronic Disease , DNA Gyrase/genetics , DNA Gyrase/metabolism , Drug Resistance, Bacterial , ERG1 Potassium Channel , Fluoroquinolones/pharmacology , Humans , Macrophages/drug effects , Macrophages/microbiology , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Mycobacterium tuberculosis/enzymology , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacokinetics , Topoisomerase II Inhibitors/pharmacology , Tuberculosis, Pulmonary/drug therapy
7.
Antimicrob Agents Chemother ; 58(6): 3312-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24687493

ABSTRACT

Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by the coaA gene is an essential pantothenate kinase in Mycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-type M. tuberculosis strain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in a M. tuberculosis knockdown strain with reduced PanK expression levels. Additionally, in vitro and in vivo survival kinetic studies performed with a M. tuberculosis PanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK in M. tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Blotting, Western , Gene Knockdown Techniques , Humans , Microbial Sensitivity Tests , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Phenotype , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation , Quinolones/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology
8.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24405701

ABSTRACT

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Subject(s)
Mycobacterium tuberculosis/drug effects , Pyridones/chemical synthesis , Thiazoles/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Models, Animal , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...