Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 719: 137336, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32135318

ABSTRACT

Assessment and monitoring of river morphology own an important role in river engineering; since, changes in river morphology including erosion and sedimentation affect river cross-sections and flow processes. An approach for River Morphodynamics Analysis based on Remote Sensing (RiMARS) was developed and tested on the case of Mollasadra dam construction on the Kor River, Iran. Landsat multispectral images obtained from the open USGS dataset are used to extract river morphology dynamics by the Modified Normalized Difference Water Index (MNDWI). RiMARS comes with a river extraction module which is independent of threshold segmentation methods to produce binary-level images. In addition, RiMARS is equipped with developed indices for assessing the morphological alterations. Five characteristics of river morphology (spatiotemporal Sinuosity Index (SI), Absolute Centerline Migration (ACM), Rate of Centerline Migration (RCM), River Linear Pattern (RLP), and Meander Migration Index (MMI)), are applied to quantify river morphology changes. The results indicated that the Kor River centerline underwent average annual migration of 40 cm to the southwest during 1993-2003 (pre-construction impact), 20 cm to the northeast during 2003-2011, and 40 cm to the south-west during 2011-2017 (post-construction impact). Spatially, as the Kor River runs towards the Doroudzan dam, changes in river morphology have increased from upstream to downstream; particularly evident where the river flows in a plain instead of the valley. Based on SI values, there was a 5% change in the straight sinuosity class in the pre-construction period, but an 18% decrease in the straight class during the post-construction period. Here we demonstrate the application of RiMARS in assessing the impact of dam construction on morphometric processes in Kor River, but it can be used to assess other riverine changes, including tracking the unauthorized water consumption using diverted canals. RiMARS can be applied on multispectral images.

2.
Sci Total Environ ; 586: 858-869, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28215796

ABSTRACT

Restoration impact of forestry-drained peatlands on runoff water quality and dissolved organic carbon (DOC) and nutrient export was studied. Eight catchments were included: three mesotrophic (one undrained control, two treatments), two ombrotrophic (one drained control, one treatment) and three oligotrophic catchments (one undrained control, two treatments). Three calibration years and four post-restoration years were included in the data from seven catchments, for which runoff was recorded. For one mesotrophic treatment catchment only one year of pre-restoration and two years of post-restoration water quality data is reported. Restoration was done by filling in and damming the ditches. Water samples were collected monthly-biweekly during the snow-free period; runoff was recorded continuously during the same period. Water quality was estimated for winter using ratios derived from external data. Runoff for non-recorded periods were estimated using the FEMMA model. A high impact on DOC, nitrogen (N) and phosphorus (P) was observed in the mesotrophic catchments, and mostly no significant impact in the nutrient-poor catchments. The DOC load from one catchment exceeded 1000kg (restored-ha)-1 in the first year; increase of DOC concentration from 50 to 250mgl-1 was observed in the other mesotrophic treatment catchment. Impact on total nitrogen export of over 30kg (restored-ha)-1 was observed in one fertile catchment during the first year. An impact of over 5kg (restored-ha)-1 on ammonium export was observed in one year in the mesotrophic catchment. Impact on P export from the mesotrophic catchment was nearly 5kg P (restored-ha)-1 in the first year. The results imply that restoration of nutrient-rich forestry-drained peatlands poses significant risk for at least short term elevated loads degrading the water quality in receiving water bodies. Restoration of nutrient-poor peatlands poses a minor risk in comparison. Research is needed regarding the factors behind these risks and how to mitigate them.

SELECTION OF CITATIONS
SEARCH DETAIL
...