Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37046732

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleural surface that includes three major histologic subtypes, epitheliod, sarcomatoid and biphasic. Epithelioid mesothelioma is usually associated with better prognosis. The genetic mechanisms driving MPM, the possible target mutations and the correlation with overall survival remain largely unsettled. We performed target exome sequencing in 29 cases of MPM aimed at identifying somatic mutations and, eventually, their correlation with phenotypic traits and prognostic significance. We found that KRAS mutations, occurring in 13.7% of cases, were associated with shortened median survival (7.6 versus 32.6 months in KRAS wild-type; p = 0.005), as it was the occurrence of any ≥3 mutations (7.6 versus 37.6 months; p = 0.049). Conversely, the presence of KDR single nucleotide polymorphism p.V297I (rs2305948) resulted in a favorable variable for survival (NR versus 23.4 months; p = 0.026). With the intrinsic limitations of a small number of cases and patient heterogeneity, results of this study contribute to the characterization of the mutation profile of MPM and the impact of selected somatic mutations, and possibly KDR polymorphism, on prognosis.

2.
Mol Clin Oncol ; 9(6): 689-696, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30546903

ABSTRACT

The aim of the present study was to assess the expression of select DNA repair and synthesis genes in non-small-cell lung cancer (NSCLC) according to KRAS mutation status. ERCC1, TS, RRM1, and BRCA1 mRNA expression levels were assessed from either primary or metastatic tumor specimens of patients diagnosed with epidermal growth factor receptor (EGFR) wild-type (WT) advanced NSCLC. Total RNA was isolated from paraffin-embedded tumor specimens using the RNeasy FFPE kit and automatically purified using a QiaCube instrument. Quantification levels were analyzed by real-time one-step RT-PCR using QuantiFast technology, and the results were compared considering ß-actin as the internal reference gene. One hundred and eighty-four patients with advanced NSCLC were evaluated for the analysis, of which 92 were KRAS-mutants. Nearly all patients had adenocarcinoma histology (96.7%). Among KRAS-mutants, the majority had a KRAS codon 12 mutation (88%), the most common being G12C (44.4% of cases). Mean ERCC1 levels were indicated to be significantly higher in KRAS-mutants when compared with KRAS WT patients (3,234±6.63 vs. 184±1.24; P=0.05). However, mean TS levels were significantly lower in the KRAS-mutant subgroup compared with the KRAS WT subgroup (4,481±3.756 vs. 5,941±6.4; P=0.039). KRAS-mutant NSCLCs are more likely to express high ERCC1 and low TS levels. This finding may suggest different sensitivity to cytotoxic chemotherapy according to KRAS mutation status.

3.
Med Oncol ; 33(2): 18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26786153

ABSTRACT

Recent advances in tiling array and high throughput analyses revealed that at least 87.3 % of the human genome is actively transcribed, though <3 % of the human genome encodes proteins. This unexpected truth suggests that most of the transcriptome is constituted by noncoding RNA. Among them, high-resolution microarray and massively parallel sequencing analyses identified long noncoding RNAs (lncRNAs) as nonprotein-coding transcripts. lncRNAs are largely polyadenylated and >200 nucleotides in length transcripts, involved in gene expression through epigenetic and transcriptional regulation, splicing, imprinting and subcellular transport. Although lncRNAs functions are largely uncharacterized, accumulating data indicate that they are involved in fundamental biological functions. Conversely, their dysregulation has increasingly been recognized to contribute to the development and progression of several human malignancies, especially lung cancer, which represents the leading cause of cancer-related deaths worldwide. We conducted a comprehensive review of the published literature focusing on lncRNAs function and disruption in nonsmall cell lung cancer biology, also highlighting their value as biomarkers and potential therapeutic targets. lncRNAs are involved in NSCLC pathogenesis, modulating fundamental cellular processes such as proliferation, cell growth, apoptosis, migration, stem cell maintenance and epithelial to mesenchymal transition, also serving as signaling transducers, molecular decoys and scaffolds. Also, lncRNAs represent very promising biomarkers in early-stage NSCLC patients and may become particularly useful in noninvasive screening protocols. lncRNAs may be used as predictive biomarkers for chemotherapy and targeted therapies sensitivity. Furthermore, selectively targeting oncogenic lncRNAs could provide a new therapeutic tool in treating NSCLC patients. lncRNAs disruption plays a pivotal role in NSCLC development and progression. These molecules also serve as diagnostic, prognostic and predictive biomarkers. Characterization of lncRNA genes and their mechanisms of action will enable us to develop a more comprehensive clinical approach, with the final goal to benefit our patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/therapy , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , RNA, Long Noncoding/genetics
4.
Expert Rev Respir Med ; 10(1): 53-68, 2016.
Article in English | MEDLINE | ID: mdl-26714748

ABSTRACT

Lung cancer is the leading cause of cancer deaths worldwide, with non-small cell lung cancer (NSCLC) accounting for 80% of all lung cancers. Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the deadliest cancer-related proteins and plays a pivotal role in the most aggressive and lethal human cancers, including lung adenocarcinoma where it represents one of the most frequently mutated oncogene. Although therapeutic progresses have made an impact over the last decade, median survival for patients with advanced lung cancer remains disappointing, with a 5-year worldwide survival rate of <15%. For more than 20 years it has been recognized that constitutively active signaling downstream of KRAS is a fundamental driver of lung tumorigenesis. However, years of pursuit have failed to yield a drug that can safely curb KRAS activity; up to now no approved therapies exist for KRAS-mutant NSCLC. The aim of this review is to discuss the current knowledge of KRAS-mutated NSCLC, touching upon KRAS clinical relevance as a prognostic and predictive biomarker, with an emphasis on novel therapeutic approaches for the treatment of KRAS-variant NSCLC.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma of Lung , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Mutation , Prognosis
5.
Ecancermedicalscience ; 9: 569, 2015.
Article in English | MEDLINE | ID: mdl-26435742

ABSTRACT

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have dramatically changed the prognosis of advanced non-small cell lung cancers (NSCLCs) that harbour specific EGFR activating mutations. However, the efficacy of an EGFR-TKI is limited by the onset of acquired resistance, usually within one year, in virtually all treated patients. Moreover, a small percentage of EGFR-mutant NSCLCs do not respond to an EGFR-TKI, thus displaying primary resistance. At the present time, several mechanisms of either primary and acquired resistance have been elucidated, and new drugs are currently under preclinical and clinical development in order to overcome resistance to treatment. Nevertheless, there still remains much to be thoroughly investigated, as so far research has mainly focused on the role of proteincoding genes involved in resistance to EGFR-TKIs. On the other hand, in line with the data underscoring the relevance of non-coding RNAs in the pathogenesis of lung cancer and modulation of response to systemic therapies, microRNAs (miRNAs) have been supposed to play an important role in resistance to EGFR-TKIs. The aim of this review is to briefly summarise the existing relationship between miRNAs and resistance to EGFR-TKIs, and also focusing on the possible clinical applications of miRNAs in reverting and overcoming such resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...