Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cell ; 79(1): 191-198.e3, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32619469

ABSTRACT

We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation , Glycine/analogs & derivatives , Microtubules/drug effects , Neoplasms/pathology , Pharmaceutical Preparations/metabolism , Sulfones/pharmacology , Tubulin/metabolism , Cells, Cultured , Crystallography, X-Ray , Drug Contamination , Glycine/pharmacology , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Pharmaceutical Preparations/chemistry , Protein Conformation , Tubulin/chemistry , Tubulin/genetics
2.
ACS Omega ; 4(1): 755-764, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30775645

ABSTRACT

Tetrahydroisoquinoline (THIQ) 6-O-sulfamate-based anticancer agents, inspired by the endogenous steroid 2-methoxyestradiol and its sulfamate derivatives, are further explored for antiproliferative and microtubule disruptor activity. Based on recently designed C3-methyl C7-methoxy-substituted THIQ derivatives, compounds with mono- and dichloro-substitutions on the pendant N-benzyl ring were synthesized and evaluated. Although improved antiproliferative activity was observed, for example, 4a versus 4b and 4b versus 8c, it was relatively modest. Compound 8c, a 2',5'-dichlorobenzyl derivative was, however, identified as a promising antiproliferative agent with in vitro activities exceeding that of the parent steroid (e.g., GI50 90 nM in DU-145 cells) and was highly potent against a range of tumor cell lines (e.g., GI50 26 nM for OVCAR-3). 8c inhibited the polymerization of tubulin in vitro with an IC50 only twofold less potent than combretastatin A-4 and inhibited colchicine binding to tubulin. Tubulin polymerization assays showed the parent THIQ 4a to be only a very weak inhibitor, but a striking potency difference was seen between compounds with C2' methoxy and chloro substituents, whereas this was much smaller when these substituents were positioned at C5'. To confirm the target in atomic detail and because 8c is a racemic mixture, an achiral parent THIQ 6-O-sulfamate derivative 10 was successfully cocrystallized with the αß-tubulin heterodimer. The derivative 10 binds at the colchicine site on tubulin, the first example of this compound class investigated in such detail, with its sulfamate group interacting with residues beyond the reach of colchicine itself, similar to a recently reported quinazolinone sulfamate derivative, 6a. The structure also suggests that for racemic C3-methyl-substituted THIQ derivatives, such as 8c, the (S)-enantiomer is likely to be preferentially accommodated within the colchicine site for steric reasons. The results further confirm the potential of nonsteroidal THIQ sulfamate derivatives for oncology and suggest that the mechanism of microtubule destabilization for the THIQ compound class is to prevent the curved-to-straight conformational transition of tubulin required for polymerization.

3.
Eur J Med Chem ; 162: 290-320, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30448418

ABSTRACT

Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.


Subject(s)
Antineoplastic Agents/chemistry , Oxazepines/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Resistance, Multiple/drug effects , Drug Screening Assays, Antitumor , Humans , Microtubules/drug effects , Molecular Structure , Oxazepines/therapeutic use , Structure-Activity Relationship
4.
Nat Commun ; 9(1): 2106, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844393

ABSTRACT

Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on ß-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer.


Subject(s)
Fluorescence Polarization/methods , Maytansine/metabolism , Microtubules/metabolism , Tubulin/metabolism , Ado-Trastuzumab Emtansine , Animals , Antineoplastic Agents/metabolism , Binding Sites , Humans , Ligands , Macrolides/metabolism , Maytansine/analogs & derivatives , Oxazoles/metabolism , Trastuzumab/metabolism
5.
Methods Mol Biol ; 1762: 145-178, 2018.
Article in English | MEDLINE | ID: mdl-29594772

ABSTRACT

Rational drug design is essential for new drugs to emerge, especially when the structure of a target protein or catalytic enzyme is known experimentally. To that purpose, high-throughput virtual ligand screening campaigns aim at discovering computationally new binding molecules or fragments to inhibit a particular protein interaction or biological activity. The virtual ligand screening process often relies on docking methods which allow predicting the binding of a molecule into a biological target structure with a correct conformation and the best possible affinity. The docking method itself is not sufficient as it suffers from several and crucial limitations (lack of protein flexibility information, no solvation effects, poor scoring functions, and unreliable molecular affinity estimation).At the interface of computer techniques and drug discovery, molecular dynamics (MD) allows introducing protein flexibility before or after a docking protocol, refining the structure of protein-drug complexes in the presence of water, ions and even in membrane-like environments, and ranking complexes with more accurate binding energy calculations. In this chapter we describe the up-to-date MD protocols that are mandatory supporting tools in the virtual ligand screening (VS) process. Using docking in combination with MD is one of the best computer-aided drug design protocols nowadays. It has proved its efficiency through many examples, described below.


Subject(s)
Computational Biology/methods , Drug Evaluation, Preclinical/methods , Proteins/metabolism , Binding Sites , Drug Design , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Proteins/chemistry
6.
J Nat Prod ; 81(3): 494-505, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29023132

ABSTRACT

The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to ß-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 105 M-1 in the case of unmodified tubulin to 1.4 ± 0.3 × 105 M-1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of ß-tubulin.


Subject(s)
Binding Sites/physiology , Bridged-Ring Compounds/metabolism , Colchicine/metabolism , Macrolides/metabolism , Nucleotides/metabolism , Taxoids/metabolism , Tubulin/metabolism , Animals , Biological Products/metabolism , Cattle , Humans , Ligands , Microtubules/metabolism
7.
J Med Chem ; 61(3): 1031-1044, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29227648

ABSTRACT

Quinazolinone-based anticancer agents were designed, decorated with functional groups from a 2-methoxyestradiol-based microtubule disruptor series, incorporating the aryl sulfamate motif of steroid sulfatase (STS) inhibitors. The steroidal AB-ring system was mimicked, favoring conformations with an N-2 substituent occupying D-ring space. Evaluation against breast and prostate tumor cell lines identified 7b with DU-145 antiproliferative activity (GI50 300 nM). A preliminary structure-activity relationship afforded compounds (e.g., 7j GI50 50 nM) with activity exceeding that of the parent. Both 7b and 7j inhibit tubulin assembly in vitro and colchicine binding, and 7j was successfully co-crystallized with the αß-tubulin heterodimer as the first of its class, its sulfamate group interacting positively at the colchicine binding site. Microtubule destabilization by 7j is likely achieved by preventing the curved-to-straight conformational transition in αß-tubulin. Quinazolinone sulfamates surprisingly showed weak STS inhibition. Preliminary in vivo studies in a multiple myeloma xenograft model for 7b showed oral activity, confirming the promise of this template.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology , Tubulin/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Female , Inhibitory Concentration 50 , Mice , Models, Molecular , Protein Multimerization/drug effects , Protein Structure, Quaternary , Quinazolinones/chemistry , Stereoisomerism , Structure-Activity Relationship , Tubulin Modulators/chemistry
8.
Mol Cell ; 68(1): 210-223.e6, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985505

ABSTRACT

Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Genetic Testing/methods , Glycine/analogs & derivatives , Microtubules/drug effects , Sulfones/pharmacology , Tubulin Modulators/pharmacology , Tubulin/genetics , Antineoplastic Agents/chemistry , CRISPR-Cas Systems , Colchicine/pharmacology , Drug Resistance, Neoplasm , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycine/chemistry , Glycine/pharmacology , HeLa Cells , Humans , K562 Cells , Kinesins/genetics , Kinesins/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Microtubules/metabolism , Microtubules/ultrastructure , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/pharmacology , Sulfones/chemistry , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemistry , Vinblastine/pharmacology
9.
Sci Rep ; 6: 22878, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26964677

ABSTRACT

The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference-NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.


Subject(s)
DNA Ligase ATP/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Models, Molecular , Binding Sites , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Ligase ATP/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , Reproducibility of Results , Structure-Activity Relationship
10.
Learn Mem ; 21(6): 311-5, 2014 May 15.
Article in English | MEDLINE | ID: mdl-25171422

ABSTRACT

Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal area CA1 or CA3 immediately after contextual fear conditioning. As previously shown, injections in CA1 impaired long-term memory but spared short-term memory. Conversely, injections in CA3 impaired both long-term and short-term memories. We conclude that early steps of experience-induced plasticity occurring in CA3 and underlying short-term memory require protein synthesis.


Subject(s)
Anisomycin/pharmacology , CA3 Region, Hippocampal/metabolism , Fear/physiology , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Protein Synthesis Inhibitors/pharmacology , Animals , CA3 Region, Hippocampal/drug effects , Conditioning, Classical , Fear/drug effects , Male , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Mice , Mice, Inbred C57BL , Neuronal Plasticity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...