Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 639: 122946, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37044230

ABSTRACT

Dexamethasone is a well-known anti-inflammatory drug readily used to treat many lung diseases. However, its side effects and poor lower airway deposition and retention are significant limitations to its usage. In this work, we developed lipid nanoparticulate platforms loaded with dexamethasone and evaluated their behavior in inflammatory lung models in vitro and in vivo. Dexamethasone-loaded liposomes with an average diameter below 150 nm were obtained using a solvent injection method. Three different formulations were produced with a distinct surface coating (polyethylene glycol, hyaluronic acid, or a mixture of both) as innovative strategies to cross the pulmonary mucus layer and/or target CD44 expressed on alveolar proinflammatory macrophages. Interestingly, while electron paramagnetic spectroscopy showed that surface modifications did not induce any molecular changes in the liposomal membrane, drug loading analysis revealed that adding the hyaluronic acid in the bilayer led to a decrease of dexamethasone loading (from 3.0 to 1.7 w/w%). In vitro experiments on LPS-activated macrophages demonstrated that the encapsulation of dexamethasone in liposomes, particularly in HA-bearing ones, improved its anti-inflammatory efficacy compared to the free drug. Subsequently, in vivo data revealed that while intratracheal administration of free dexamethasone led to an important inter-animals variation of efficacy, dexamethasone-loaded liposomes showed an improved consistency within the results. Our data indicate that encapsulating dexamethasone into lipid nanoparticles is a potent strategy to improve its efficacy after lung delivery.


Subject(s)
Hyaluronic Acid , Liposomes , Animals , Liposomes/chemistry , Hyaluronic Acid/chemistry , Anti-Inflammatory Agents , Macrophages , Dexamethasone
2.
Front Pharmacol ; 13: 854430, 2022.
Article in English | MEDLINE | ID: mdl-35387345

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation-a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 µg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 µg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.

3.
J Mol Struct ; 1225: 129143, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-32863430

ABSTRACT

In this paper we investigate 10 different HIV protease inhibitors (HPIs) as possible repurposed-drugs candidates against SARS-CoV-2. To this end, we execute molecular docking and molecular dynamics simulations. The in silico data demonstrated that, despite their molecular differences, all HPIs presented a similar behavior for the parameters analyzed, with the exception of Nelfinavir that showed better results for most of the molecular dynamics parameters in comparison with the N3 inhibitor.

4.
Mol Pharm ; 17(3): 837-851, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31977228

ABSTRACT

Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.


Subject(s)
Drug Carriers/chemistry , Erythrocyte Membrane/chemistry , Ferric Compounds/chemistry , Fluorescent Dyes/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnets/chemistry , Manganese Compounds/chemistry , Photothermal Therapy/methods , Animals , Carcinoma, Ehrlich Tumor/drug therapy , Disease Models, Animal , Drug Carriers/pharmacokinetics , Female , Ferric Compounds/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Hyperthermia, Induced/methods , Manganese Compounds/pharmacokinetics , Mice , Particle Size , Theranostic Nanomedicine/methods , Tissue Distribution , Tumor Burden/drug effects , Tumor Microenvironment/drug effects
5.
ACS Biomater Sci Eng ; 6(8): 4523-4538, 2020 08 10.
Article in English | MEDLINE | ID: mdl-33455175

ABSTRACT

IR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core. Molecular docking with AutoDock Vina studies showed that IR-780 binds to bovine serum albumin (BSA) with greater stability at a higher temperature, allowing the protein binding pocket to better fit this dye. The theoretical analysis corroborates the experimental protocols, where an enhancement of IR-780 was found coupled to BSA at 60 °C, even 30 days after preparation, in comparison to 30 °C. In vitro assays monitoring the viability of Ehrlich ascites carcinoma cells revealed the importance of the inorganic magnetic core on the nanocarrier photothermal-cytotoxic effect. Fluorescence molecular tomography measurements of Ehrlich tumor-bearing Swiss mice revealed the biodistribution of the nanocarriers, with marked accumulation in the tumor tissue (≈3% ID). The histopathological analysis demonstrated strong increase in tumoral necrosis areas after 24 and 72 h after treatment, indicating tumor regression. Tumor regression analysis of nonirradiated animals indicate a IR-780 dose-dependent antitumoral effect with survival rates higher than 70% (animals monitored up to 600 days). Furthermore, an in vivo photothermal therapy procedure was performed and tumor regression was also verified. These results show a novel insight for the biomedical application of IR-780-albumin-based nanocarriers, namely cancer therapy, not only by photoinduced therapy but also by a nonirradiation mechanism. Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) suggest potential for clinical translation.


Subject(s)
Hyperthermia, Induced , Animals , Cell Line, Tumor , Indoles , Mice , Molecular Docking Simulation , Phototherapy , Tissue Distribution
6.
Toxicol In Vitro ; 27(1): 323-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22944593

ABSTRACT

Terpenes are considered potent skin permeation enhancers with low toxicity. Electron paramagnetic resonance (EPR) spectroscopy of the spin label 5-doxyl stearic acid (5-DSA) was used to monitor the effect of sesquiterpene nerolidol and various monoterpenes on membrane fluidity in erythrocyte and fibroblast cells. In addition, the hemolytic levels and cytotoxic effects on cultured fibroblast cells were also measured to investigate possible relationships between the cellular irritation potentials of terpenes and the ability to modify membrane fluidity. All terpenes increased cell membrane fluidity with no significant differences between the monoterpenes, but the effect of sesquiterpene was significantly greater than that of the monoterpenes. The IC(50) values for the terpenes in the cytotoxicity assay indicated that 1,8-cineole showed lower cytotoxicity and α-terpineol and nerolidol showed higher cytotoxicity. The correlation between the hemolytic effect and the IC(50) values for fibroblast viability was low (R=0.61); however, in both tests, nerolidol was among the most aggressive of terpenes and 1,8-cineole was among the least aggressive. Obtaining information concerning the toxicity and potency of terpenes could aid in the design of topical formulations optimized to facilitate drug absorption for the treatment of many skin diseases.


Subject(s)
BALB 3T3 Cells/drug effects , Terpenes/toxicity , Animals , BALB 3T3 Cells/physiology , Erythrocyte Membrane/drug effects , Hemolysis/drug effects , Membrane Fluidity/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...