Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986804

ABSTRACT

Inducing immunogenic cell death (ICD) during cancer therapy is a major challenge that might significantly improve patient survival. The purpose of this study was to develop a theranostic nanocarrier, capable both of conveying a cytotoxic thermal dose when mediating photothermal therapy (PTT) after its intravenous delivery, and of consequently inducing ICD, improving survival. The nanocarrier consists of red blood cell membranes (RBCm) embedding the near-infrared dye IR-780 (IR) and camouflaging Mn-ferrite nanoparticles (RBCm-IR-Mn). The RBCm-IR-Mn nanocarriers were characterized by size, morphology, surface charge, magnetic, photophysical, and photothermal properties. Their photothermal conversion efficiency was found to be size- and concentration-dependent. Late apoptosis was observed as the cell death mechanism for PTT. Calreticulin and HMGB1 protein levels increased for in vitro PTT with temperature around 55 °C (ablative regime) but not for 44 °C (hyperthermia), suggesting ICD elicitation under ablation. RBCm-IR-Mn were then intravenously administered in sarcoma S180-bearing Swiss mice, and in vivo ablative PTT was performed five days later. Tumor volumes were monitored for the subsequent 120 days. RBCm-IR-Mn-mediated PTT promoted tumor regression in 11/12 animals, with an overall survival rate of 85% (11/13). Our results demonstrate that the RBCm-IR-Mn nanocarriers are great candidates for PTT-induced cancer immunotherapy.

2.
Pharmaceutics ; 15(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36839765

ABSTRACT

Biomimetic nanoparticles hold great promise for photonic-mediated nanomedicine due to the association of the biological functionality of the membrane with the physical/chemical goals of organic/inorganic structures, but studies involving fluorescent biomimetic vesicles are still scarce. The purpose of this article is to determine how photothermal therapy (PTT) with theranostic IR-780-based nanoparticles depends on the dye content, cholesterol content, lipid bilayer phase and cell membrane type. The photophysical responses of synthetic liposomes, cell membrane vesicles and hybrid nanoparticles are compared. The samples were characterized by nanoparticle tracking analysis, photoluminescence, electron spin resonance, and photothermal- and heat-mediated drug release experiments, among other techniques. The photothermal conversion efficiency (PCE) was determined using Roper's method. All samples excited at 804 nm showed three fluorescence bands, two of them independent of the IR-780 content. Samples with a fluorescence band at around 850 nm showed photobleaching (PBL). Quenching was higher in cell membrane vesicles, while cholesterol inhibited quenching in synthetic liposomes with low dye content. PTT depended on the cell membrane and was more efficient for melanoma than erythrocyte vesicles. Synthetic liposomes containing cholesterol and a high amount of IR-780 presented superior performance in PTT experiments, with a 2.4-fold PCE increase in comparison with free IR-780, no PBL and the ability to heat-trigger doxorubicin release.

3.
Eur J Pharm Sci ; 163: 105859, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33894283

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to study the interactions of amphotericin B (AmB) with the plasma membrane of Leishmania (L.) amazonensis promastigotes, human erythrocytes and J774.A1 murine macrophages, in comparison with reported and novel data for miltefosine (MIL). One of the objectives of this work is to look for the relationships between the activities of these two drugs in the Leishmania parasite with their changes in the cell membrane. A spin-labeled stearic acid inserted into the cell membranes showed strong interactions with putative AmB/sterol complexes, characterized by reductions in molecular dynamics. The concentration of the drugs in the plasma membrane that reduced the cell population by 50%, and the membrane-water partition coefficient of the drugs, were assessed. These biophysical parameters enabled estimates of possible therapeutic concentrations of these two drugs in the interstitial fluids of the tissues to be made. AmB displayed higher affinity for the plasma membrane of L. amazonensis than for that of the macrophage and erythrocyte, denoting a preference for a membrane that contains ergosterol. AmB also demonstrated higher hemolytic potential than MIL for measurements on erythrocytes in both PBS and whole blood. For MIL, the EPR technique detected membrane changes induced by the drug in the same concentration range that inhibited the growth of parasites, but in the case of AmB, an 8-fold higher concentration of the IC50 was necessary to observe a reduction in membrane fluidity, suggesting a better localized effect of AmB on the membrane. Taken together, the results demonstrate that the antiproliferative and cytotoxic effects of both drugs are associated with changes in cell membranes.


Subject(s)
Antiprotozoal Agents , Leishmania , Amphotericin B/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Electron Spin Resonance Spectroscopy , Erythrocytes , Humans , Macrophages , Mice , Phosphorylcholine/analogs & derivatives
4.
Sci Rep ; 10(1): 19285, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159142

ABSTRACT

Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration. Liposomes elaborated with phosphatidylcholine (LP PC) or phosphatidylcholine and spermine (LP PC: SPM) were stable under storage at 6 ºC for 30 days, showed mucoadhesive characteristics, and were non-irritant, according to HET-CAM tests. Electron paramagnetic resonance spectroscopy measurements showed that neither the drug nor spermine incorporations produced evident alterations in the fluidity of the liposome's membranes, which retained their structural stability even under iontophoretic conditions. Mean diameter and zeta potential were 177.2 ± 2.7 nm and - 5.7 ± 0.3 mV, respectively, for LP PC; and 175.4 ± 1.9 nm and + 19.5 ± 1.0 mV, respectively, for LP PC:SPM. The minimal inhibitory concentration (MIC) and the minimal bactericide concentration (MBC) of the liposomes for P. aeruginosa showed values lower than the commercial formulation (Besivance). Nevertheless, both formulations presented a similar increase in permeability upon the electric current application. Hence, liposome charge incorporation did not prove to be additionally advantageous for iontophoretic therapy. Passive drug penetration was evaluated through a novel in vitro ocular model that simulates the lacrimal flow and challenges the formulation resistance in the passive delivery situation. As expected, LP PC: SPM showed higher permeation than the control (Besivance). In conclusion, besifloxacin incorporation into positively charged liposomes improved passive topical delivery and can be a good strategy to improve topical ophthalmic treatments.


Subject(s)
Azepines , Eye/metabolism , Fluoroquinolones , Administration, Ophthalmic , Animals , Azepines/chemistry , Azepines/pharmacokinetics , Azepines/pharmacology , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Liposomes , Permeability , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacokinetics , Phosphatidylcholines/pharmacology , Swine
5.
J Phys Chem B ; 124(45): 10157-10165, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33119317

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to study the interactions of amphotericin B (AmB) with the plasma membrane of Leishmania amazonensis promastigotes, erythrocytes, and J774 macrophages. Spin labels embedded into the cell membranes detected strong interactions with putative AmB/sterol complexes that resulted in pronounced changes in the EPR spectra, which can be interpreted as a reduction in membrane fluidity or an increase in the polarity assessed by the spin probe. The EPR spectra of spin-labeled lipids corroborated the findings that AmB does not enter phospholipid membrane-sterol models and probably forms extramembranous aggregates, as predicted by the sterol sponge model. Furthermore, these aggregates were shown to extract the spin probe androstanol from the lipid bilayer. However, in contrast to the results for the model membrane, EPR spectroscopy suggested that AmB easily enters the membranes of the studied cells, implying that the entry process is dependent on interactions with the membrane proteins.


Subject(s)
Amphotericin B , Leishmania , Amphotericin B/pharmacology , Cell Membrane , Electron Spin Resonance Spectroscopy , Membrane Fluidity , Spin Labels
6.
Colloids Surf B Biointerfaces ; 183: 110421, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31401463

ABSTRACT

Using the electron paramagnetic resonance (EPR) of spin-labeled stearic acid and a spin label chemically attached to the membrane proteins, the interaction of miltefosine (MIL) and the ionic surfactants sodium dodecyl sulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) with the plasma membrane of Leishmania (L.) amazonensis promastigotes was studied. The spin-label EPR data indicated that the four compounds studied have the ability to increase the molecular dynamics of membrane proteins to a large extent. Compared to the other compounds, SDS produced the smallest increases in dynamics and demonstrated the lowest antileishmanial activity and cytotoxicity to J774.A1 macrophages. The activities of the other three compounds were not different from each other, but CTAC had a stronger activity against L. amazonensis promastigotes at higher cellular concentrations (> 1 × 109 cells/mL) and was the most effective against L. amazonensis-infected macrophages. However, CTAC was also the most cytotoxic to macrophages. By measuring the IC50/CC50 values for assays of different cell concentrations, we estimated the membrane-water partition coefficient (KM/W) as well as the concentrations in the membrane (cm50) and aqueous phase (cw50) of the compounds at their IC50/CC50. Compared to the other compounds, SDS showed the lowest value of KM/W and the highest value of cm50. In all experiments in this study, the data for the zwitterionic molecules HPS and MIL were not significantly different.


Subject(s)
Antiprotozoal Agents/pharmacology , Cetrimonium/pharmacology , Cytotoxins/pharmacology , Leishmania braziliensis/drug effects , Quaternary Ammonium Compounds/pharmacology , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Antiprotozoal Agents/chemistry , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Cetrimonium/chemistry , Cytotoxins/chemistry , Electron Spin Resonance Spectroscopy , Humans , Inhibitory Concentration 50 , Leishmania braziliensis/growth & development , Leishmania braziliensis/metabolism , Macrophages/drug effects , Macrophages/parasitology , Molecular Dynamics Simulation , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Quaternary Ammonium Compounds/chemistry , Sodium Dodecyl Sulfate/chemistry , Spin Labels , Stearic Acids/chemistry , Surface-Active Agents/chemistry
7.
Colloids Surf B Biointerfaces ; 180: 23-30, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31022554

ABSTRACT

For miltefosine (MIL), a zwitterionic alkylphospholipid approved for leishmaniasis treatment, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy has indicated that the interaction of MIL with membrane proteins has similarities to that of ionic surfactants. A general concern about leishmanicides is their high hemolytic potential, so we decided to compare the interactions of MIL and three ionic surfactants with the erythrocyte membrane. Measurements with two different spin labels indicated that the surfactants sodium dodecyl sulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) as well as MIL increase the dynamics of erythrocyte membrane proteins in a concentration-dependent manner. SDS produced the smallest increases in protein dynamics and was also the least hemolytic for measurements in PBS and in whole blood. Spin label EPR measurements performed directly in the blood plasma detected increased albumin stiffness caused by 2.5 mM SDS due to electrostatic/hydrophobic interactions. For 10 mM concentrations of the compounds, the EPR spectra showed a fraction of albumin with greater mobility and another with the same as that of the untreated plasma. The zwitterionic compounds MIL and HPS did not present significant differences in this study.


Subject(s)
Antiprotozoal Agents/pharmacology , Erythrocyte Membrane/drug effects , Membrane Proteins/chemistry , Phosphorylcholine/analogs & derivatives , Animals , Antiprotozoal Agents/chemistry , Bis-Trimethylammonium Compounds/chemistry , Bis-Trimethylammonium Compounds/pharmacology , Cattle , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy , Erythrocyte Membrane/chemistry , Hemolysis/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Micelles , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Serum Albumin, Bovine/chemistry , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology , Spin Labels , Static Electricity
8.
Biochim Biophys Acta Biomembr ; 1861(6): 1049-1056, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30890467

ABSTRACT

The sesquiterpene nerolidol is a membrane-active compound that has demonstrated antitumor, antibacterial, antifungal and antiparasitic activities. In this study, we used electron paramagnetic resonance (EPR) spectroscopy and biophysical parameters determined via cell culture assays to study the mechanisms underlying the in vitro antileishmanial activity of nerolidol. The EPR spectra of a spin-labeled stearic acid indicated notable interactions of nerolidol with the cell membrane of Leishmania amazonensis amastigotes. The nerolidol IC50 values in L. amazonensis amastigotes and promastigotes were found to depend on the cell concentration used in the assay. This dependence was described by an equation that considers various cell suspension parameters, such as the 50% inhibitory concentrations of nerolidol in the cell membrane (cm50) and the aqueous phase (cw50) and the membrane-water partition coefficient of nerolidol (KM/W). Via cytotoxicity (CC50) and hemolytic potential (HC50) data, these parameters were also determined for nerolidol in macrophages and erythrocytes. With a cw50 of 125 µM, macrophages were less sensitive to nerolidol than amastigotes and promastigotes, which had mean cw50 values of 56 and 74 µM, respectively. The estimated cm50 values of nerolidol for amastigotes and promastigotes and macrophages were between 2.6 and 3.0 M, indicating substantial accumulation of nerolidol in the cell membrane. In addition, the spin-label EPR data indicated that membrane dynamic changes occurred in L. amazonensis amastigotes at concentrations similar to the nerolidol IC50 value.


Subject(s)
Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Membrane Fluidity/drug effects , Sesquiterpenes/pharmacology , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Electron Spin Resonance Spectroscopy , Hemolysis/drug effects , Mice , Mice, Inbred BALB C
9.
Int J Pharm ; 545(1-2): 93-100, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29705103

ABSTRACT

The electron paramagnetic resonance (EPR) spin labeling methodology was used to analyze the interactions of phosphatidylcholine (PC) liposomal formulations that are commonly used as transepidermal drug delivery systems with stratum corneum (SC) membranes. The lipid dynamics of five liposome formulations were evaluated to study the influences of sorbitan monooleate (Span80), cholesterol, and cholesterol with the charged lipids 2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG) on the molecular dynamics of PC vesicles. The EPR spectra of 5-doxyl-stearic acid (5-DSA) showed that the addition of Span80 to the liposomes increased the lipid fluidity, whereas cholesterol had the opposite effect, and the combination of charged lipids and cholesterol did not additionally influence the lipid bilayer dynamics. Fatty acid spin-labeled SC membranes were treated with the liposome formulations, leading to migration of the spin label to the molecular environment of the formulation and the presence of two spectral components representing distinct mobility states. In terms of molecular dynamics, these environments correspond to the lipid domains of the untreated SC and the liposome, indicating a poor interaction between the liposome and SC membranes. However, the contact was sufficient to allow a pronounced exchange of the spin-labeled fatty acid. Our data suggest that flexible liposomes may access the inner intercellular membranes of the SC and facilitate mutual lipid exchange without losing their relative liposomal integrity.


Subject(s)
Electron Spin Resonance Spectroscopy , Phosphatidylcholines/metabolism , Skin Absorption , Skin/metabolism , Animals , Animals, Newborn , Cholesterol/chemistry , Cholesterol/metabolism , Drug Compounding , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Hexoses/chemistry , Hexoses/metabolism , Liposomes , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/metabolism , Rats, Wistar , Technology, Pharmaceutical/methods
10.
Int J Pharm ; 532(1): 547-554, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28935253

ABSTRACT

The sesquiterpene nerolidol and the monoterpene limonene are potent skin-permeation enhancers that have also been shown to have antitumor, antibacterial, antifungal and antiparasitic activities. Because terpenes are membrane-active compounds, we used electron paramagnetic resonance (EPR) spectroscopy of three membrane spin labels combined with the fluorescence spectroscopy of three lipid probes to study the interactions of these terpenes with stratum corneum (SC) intercellular membranes. An experimental apparatus was developed to assess the lipid fluidity of hydrated SC membranes via the fluorescence anisotropy of extrinsic membrane probes. Both EPR and fluorescence probes indicated that the intercellular membranes of neonatal SC rats undergo a main phase transition at approximately 50°C. Taken together, the results indicated that treatment with 1% nerolidol (v/v) caused large fluidity increases in the more ordered phases of SC membranes and that these effects gradually decreased with increasing temperature. Additionally, compared with (+)-limonene, nerolidol was better able to change the SC membrane dynamics. EPR and fluorescence data suggest that these terpenes act as spacers in lipid packaging and create increased lipid disorder in the more ordered regions and phases of SC membranes, notably leading to a population of probes with less restricted motion.


Subject(s)
Cell Membrane/drug effects , Cyclohexenes/pharmacology , Epidermis/drug effects , Sesquiterpenes/pharmacology , Terpenes/pharmacology , Animals , Electron Spin Resonance Spectroscopy , Limonene , Rats , Spectrometry, Fluorescence , Spin Labels
11.
Biophys Chem ; 198: 45-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25687600

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy was used in a detailed study of the interactions of several terpenes with DPPC membranes. EPR spectra of a spin-label lipid allowed the identification of two well-resolved spectral components at temperatures below and above the main phase transition of the lipid bilayer. Terpenes caused only slight mobility increases in each of these spectral components; however, they substantially increased the population of the more mobile component. In addition, the terpenes reduced the temperature of the main phase transition by more than 8 °C and caused the extraction of the spin-labeled lipid. Nerolidol, which had the highest octanol-water partition coefficient, generated the highest amount of spin label extraction. Acting as spacers, terpenes should cause major reorganization in cell membranes, leading to an increase in the overall molecular dynamics of the membrane. At higher concentrations, terpenes may cause lipid extraction and thus leakage of the cytoplasmic content.


Subject(s)
Membranes, Artificial , Phospholipids/chemistry , Terpenes/chemistry , Electron Spin Resonance Spectroscopy , Thermodynamics
12.
PLoS One ; 9(8): e104429, 2014.
Article in English | MEDLINE | ID: mdl-25101672

ABSTRACT

Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.


Subject(s)
Cell Membrane/metabolism , Cyclohexenes/pharmacology , Drug Delivery Systems , Leishmania/metabolism , Membrane Lipids/metabolism , Sesquiterpenes/pharmacology , Terpenes/pharmacology , Electron Spin Resonance Spectroscopy , Leishmaniasis/diet therapy , Leishmaniasis/metabolism , Limonene
13.
Antimicrob Agents Chemother ; 58(6): 3021-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24614380

ABSTRACT

Miltefosine (MT) is a membrane-active alkylphospholipid licensed for the topical treatment of breast cancer skin metastases and the oral treatment of leishmaniasis, although its mechanism of action remains unclear. Electron paramagnetic resonance (EPR) spectroscopy of a spin-labeled lipid and a thiol-specific spin label in the plasma membrane of Leishmania promastigotes showed that MT causes dramatic increases in membrane dynamics. Although these alterations can be detected using a spin-labeled lipid, our experimental results indicated that MT interacts predominantly with the protein component of the membrane. Cell lysis was also detected by analyzing the supernatants of centrifuged samples for the presence of spin-labeled membrane fragments and cytoplasmic proteins. Using a method for the rapid incorporation of MT into the membrane, these effects were measured immediately after treatment under the same range of MT concentrations that cause cell growth inhibition. Cytotoxicity, estimated via microscopic counting of living and dead cells, indicated ∼70% cell death at the concentration of MT at which EPR spectroscopy detected a significant change in membrane dynamics. After this initial impact on the number of viable parasites, the processes of cell death and growth continued during the first 4 h of incubation. The EPR spectra of spin-labeled membrane-bound proteins were consistent with more expanded and solvent-exposed protein conformations, suggesting a detergent-like action. Thus, MT may form micelle-like structures around polypeptide chains, and proteins with a higher hydrophobicity may induce the penetration of hydrophilic groups of MT into the membrane, causing its rupture.


Subject(s)
Antineoplastic Agents/pharmacology , Leishmania mexicana/drug effects , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Phosphorylcholine/analogs & derivatives , Cell Membrane/metabolism , Cell Survival/drug effects , Electron Spin Resonance Spectroscopy , Humans , Hydrophobic and Hydrophilic Interactions , Leishmania mexicana/metabolism , Micelles , Molecular Dynamics Simulation , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Protein Conformation , Spin Labels
14.
J Pharm Sci ; 102(5): 1661-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23457073

ABSTRACT

Miltefosine (MT) is an alkylphospholipid that has been approved for the treatment of breast cancer metastasis and visceral leishmaniasis, although its mechanism of action remains poorly understood. Electron paramagnetic resonance spectroscopy of a spin-labeled lipid and a thiol-specific spin label showed that MT causes an increase in the molecular dynamics of erythrocyte ghost membranes and detergent-resistant membranes (DRMs) prepared from erythrocyte ghosts. In the vesicles of lipid raft constituents, it was shown that 20 mol % sphingomyelin could be replaced by 20 mol % MT with no change in the molecular dynamics. The effect of MT in DRMs was more pronounced than in erythrocyte ghosts, supporting the hypothesis that MT is a lipid raft modulator. At the reported MT-plasma concentrations found during the treatment of leishmaniasis (31-90 µg/mL), our measurements in the blood plasma indicated a hemolytic level of 2%-5%. The experiments indicated that MT acts predominantly on the protein component of the membrane. MT aggregates may wrap around the hydrophobic polypeptide chains, forming micelle-like structures that stabilize protein conformations more exposed to the solvent. Proteins with higher hydrophobicity may induce the penetration of the hydrophilic groups of MT into the membrane and cause it to rupture.


Subject(s)
Antineoplastic Agents/metabolism , Antiprotozoal Agents/metabolism , Erythrocyte Membrane/drug effects , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Phosphorylcholine/analogs & derivatives , Antineoplastic Agents/blood , Antiprotozoal Agents/blood , Erythrocyte Membrane/metabolism , Hemolysis/drug effects , Humans , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Phosphorylcholine/blood , Phosphorylcholine/metabolism
15.
Int J Pharm ; 434(1-2): 391-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22692081

ABSTRACT

Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50°C. This effect becomes negligible at temperatures higher that ca. 60°C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis.


Subject(s)
Antineoplastic Agents/pharmacology , Membrane Lipids/metabolism , Phosphorylcholine/analogs & derivatives , Skin/drug effects , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Animals , Animals, Newborn , Antineoplastic Agents/administration & dosage , Biomimetic Materials , Cattle , Ceramides/metabolism , Cholesterol/metabolism , Electron Spin Resonance Spectroscopy , Fatty Acids/metabolism , Fluorescence Polarization , Membrane Fluidity/drug effects , Phosphorylcholine/administration & dosage , Phosphorylcholine/pharmacology , Rats , Rats, Wistar , Skin/metabolism , Spin Labels , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...