Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 25(7): 1131-1142, 2019 07.
Article in English | MEDLINE | ID: mdl-31263285

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.


Subject(s)
Alleles , Huntingtin Protein/genetics , Huntington Disease/therapy , Mutation , Transcription, Genetic , Zinc Fingers , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Neuroprotection , Trinucleotide Repeats
2.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25733580

ABSTRACT

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Mutation , beta-Globins/genetics , Anemia, Sickle Cell/pathology , Animals , Antigens, CD34/analysis , Base Sequence , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cells, Cultured , Endodeoxyribonucleases/metabolism , Fetal Blood/transplantation , Genetic Loci , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Zinc Fingers
3.
Nat Methods ; 8(1): 74-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131970

ABSTRACT

Zinc-finger nucleases (ZFNs) drive efficient genome editing by introducing a double-strand break into the targeted gene. Cleavage is induced when two custom-designed ZFNs heterodimerize upon binding DNA to form a catalytically active nuclease complex. The importance of this dimerization event for subsequent cleavage activity has stimulated efforts to engineer the nuclease interface to prevent undesired homodimerization. Here we report the development and application of a yeast-based selection system designed to functionally interrogate the ZFN dimer interface. We identified critical residues involved in dimerization through the isolation of cold-sensitive nuclease domains. We used these residues to engineer ZFNs that have superior cleavage activity while suppressing homodimerization. The improvements were portable to orthogonal domains, allowing the concomitant and independent cleavage of two loci using two different ZFN pairs. These ZFN architectures provide a general means for obtaining highly efficient and specific genome modification.


Subject(s)
Endonucleases/metabolism , Zinc Fingers/physiology , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , Endonucleases/genetics , Genome , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zinc Fingers/genetics
4.
J Biomol Screen ; 10(4): 304-13, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15964931

ABSTRACT

Isogenic cell lines differing only in the expression of the protein of interest provide the ideal platform for cell-based screening. However, related natural lines differentially expressing the therapeutic target of choice are rare. Here the authors report a strategy for drug screening employing isogenic human cell lines in which the expression of the target protein is regulated by a gene-specific engineered zinc-finger protein (ZFP) transcription factor (TF). To demonstrate this approach, a ZFP TF activator of the human parathyroid hormone receptor 1 (PTHR1) gene was identified and introduced into HEK293 cells (negative for PTHR1). Following induction of ZFP TF expression, this cell line produced functional PTHR1 protein, resulting in a robust and ligand-specific cyclic adenosine monophosphate (cAMP) response. Reciprocally, the natural expression of PTHR1 observed in SAOS2 cells was dramatically reduced by the introduction of the appropriate PTHR1-specific ZFP TF repressor. Moreover, this ZFP-driven PTHR1 repression selectively eliminated the functional cAMP response invoked by known ligands of PTHR1. These data establish ZFP TF-generated isogenic lines as a general approach for the identification of therapeutic agents specific for the target gene of interest.


Subject(s)
Gene Expression Regulation , Protein Engineering , Transcription Factors/physiology , Zinc Fingers , Amino Acid Sequence , Base Sequence , Cell Line , DNA Primers , Humans , Molecular Sequence Data , RNA, Messenger/genetics , Receptor, Parathyroid Hormone, Type 1/chemistry , Receptor, Parathyroid Hormone, Type 1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/chemistry
5.
J Biomol Screen ; 9(1): 44-51, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15006148

ABSTRACT

Drug discovery requires high-quality, high-throughput bioassays for lead identification and optimization. These assays are usually based on immortalized cell lines, which express the selected drug target either naturally or as a consequence of transfection with the cDNA encoding the target. Natural untransfected cell lines often fail to achieve the levels of expression required to provide assays of sufficient quality with a high enough signal-to-noise ratio. Unfortunately, the use of cDNA is increasingly restricted, as the sequences for more and more genes become subject to patent restrictions. To overcome these limitations, the authors demonstrate that engineered transcription factors with Cys2-His2 zinc finger DNA-binding domains can be used to effectively activate an endogenous gene of interest without the use of isolated cDNA of the target gene. Using this approach, the authors have generated a cell line that provides a high-quality and pharmacologically validated G-protein-coupled receptor bioassay. In principle, this technology is applicable to any gene of pharmaceutical importance in any cell type.


Subject(s)
Transcription Factors/metabolism , Amino Acid Sequence , Base Sequence , Cell Line , DNA Primers , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Protein Engineering , Transcription Factors/chemistry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...