Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 429: 185-202, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31954826

ABSTRACT

Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% ß-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid ß levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cholestenone 5 alpha-Reductase , Cognition , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Phosphorylation , tau Proteins/metabolism
2.
Neurosci Lett ; 696: 60-66, 2019 03 23.
Article in English | MEDLINE | ID: mdl-30552945

ABSTRACT

Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17ß-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.


Subject(s)
Dual Specificity Phosphatase 6/metabolism , Hydrogen Peroxide/pharmacology , Phosphorylation/drug effects , Testosterone/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hydrogen Peroxide/metabolism , Neurons/drug effects , Neurons/metabolism , Neurotransmitter Agents/metabolism , Oxidative Stress/drug effects , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism
3.
Front Mol Neurosci ; 11: 359, 2018.
Article in English | MEDLINE | ID: mdl-30344476

ABSTRACT

Gonadal steroid hormones are neurotrophic and neuroprotective. These effects are modulated by local metabolism of the hormones within the brain. Such control is necessary to maintain normal function, as several signaling pathways that are activated by gonadal steroid hormones in the brain can also become dysregulated in disease. Metabolites of the gonadal steroid hormones-particularly 3α-hydroxy, 5α-reduced neurosteroids-are synthesized in the brain and can act through different mechanisms from their parent steroids. These metabolites may provide a mechanism for modulating the responses to their precursor hormones, thereby providing a regulatory influence on cellular responses. In addition, there is evidence that the 3α-hydroxy, 5α-reduced neurosteroids are neuroprotective in their own right, and therefore may contribute to the overall protection conferred by their precursors. In this review article, the rapidly growing body of evidence supporting a neuroprotective role for this class of neurosteroids will be considered, including a discussion of potential mechanisms that may be involved. In addition, we explore the hypothesis that differences between males and females in local neurosteroid production may contribute to sex differences in the development of neurodegenerative disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...