Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38722625

ABSTRACT

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Subject(s)
Cell Survival , Hydrogels , Neurons , Tin Compounds , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Engineering/methods , PC12 Cells , Rats , Tin Compounds/chemistry , Tin Compounds/pharmacology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Neurons/physiology , Neurons/cytology , Gold/chemistry , Gold/pharmacology , Graphite/chemistry , Graphite/pharmacology , Platinum/chemistry , Electric Stimulation , Nanotubes/chemistry , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL