Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 332: 122082, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37722587

ABSTRACT

AIMS: Hypercholesterolemia is an important risk factor for development of cardiovascular disturbances, such as atherosclerosis, and its treatment remains challenging in modern medicine. Cilostazol is a selective inhibitor of phosphodiesterase 3 clinically prescribed for intermittent claudication treatment. Due to its pleiotropic properties, such as lipid lowering, anti-inflammatory, and antioxidant effects, the therapeutic repurposing of cilostazol has become a strategic approach for atherosclerosis treatment. This study aimed to investigate the effects of subacute administration of cilostazol on the aortas of hypercholesterolemic rats, focusing on the signaling pathways involved in these actions. MAIN METHODS: A murine model of hypercholesterolemia was employed to mimic the early stages of atherosclerosis development. Vascular reactivity assays were performed on thoracic aorta rings to assess the vascular response, as well as the non-invasive blood pressure was evaluated by plethysmography method. Pro-inflammatory markers and malondialdehyde (MDA) levels were measured to investigate the anti-inflammatory and antioxidant effects of cilostazol. Western Blot analysis was performed in aortas homogenates to evaluate the role of cilostazol on PLC-γ/PKC-α/p38-MAPK/IκB-α/NF-кB and PKA/eNOS/PKG pathways. KEY FINDINGS: The hypercholesterolemic diet induced the production of pro-inflammatory mediators such as TNF-α, TXB2, VCAM, and worsened vascular function, marked by increased contractile response, decreased maximum relaxation, and elevated systolic and diastolic blood pressure. Cilostazol seems to counteract the deleterious effects promoted by hypercholesterolemic diet, showing important anti-inflammatory and vasculoprotective properties possibly through the inhibition of the PLC-γ/PKC-α/p38-MAPK/IκB-α/NF-кB pathway and activation of the PKA/eNOS/PKG pathway. SIGNIFICANCE: Cilostazol suppressed hypercholesterolemia-induced vascular dysfunction and inflammation. Our data suggest the potential repurposing of cilostazol as a pharmacological treatment for atherosclerosis.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(7): 789-801, 2022 07.
Article in English | MEDLINE | ID: mdl-35384464

ABSTRACT

Atherosclerosis is a multifactorial chronic disease associated with pro-inflammatory and pro-oxidative cardiovascular states. Cilostazol, a selective phosphodiesterase 3 inhibitor (PDE3), is clinically used in the treatment of intermittent claudication and secondary prevention of cerebral infarction. The aim of this study was to evaluate the cardioprotective effects of cilostazol and the molecular mechanisms involved in hypercholesterolemic rats. Male Wistar rats were divided into four groups: control group (C) and control + cilostazol group (C+CILO), that were fed a standard chow diet, and hypercholesterolemic diet group (HCD) and HCD + cilostazol (HCD+CILO) that were fed a hypercholesterolemic diet. Cilostazol treatment started after 30 days for C+CILO and HCD+CILO groups. Animals were administered cilostazol once a day for 15 days. Subsequently, serum and left ventricles were extracted for evaluation of lipid profile, inflammatory, and oxidative biomarkers. The HCD group displayed increased serum lipid levels, inflammatory cytokines production, and cardiac NF-kB protein expression and decreased cardiac Nrf2-mediated antioxidant activity. Conversely, the cilostazol treatment improved all these cardiac deleterious effects, inhibiting NF-kB activation and subsequently decreasing inflammatory mediators, reestablishing the antioxidant properties through Nrf2-mediated pathway, including increased SOD, GPx, and catalase expression. Taken together, our results indicated that cilostazol protects hypercholesterolemia-induced cardiac damage by molecular mechanisms targeting the crosstalk between Nrf2 induction and NF-kB inhibition in the heart.


Subject(s)
NF-E2-Related Factor 2 , NF-kappa B , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cilostazol/pharmacology , Inflammation/drug therapy , Lipids , Male , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 3 Inhibitors/therapeutic use , Rats , Rats, Wistar
3.
Toxicology ; 465: 153067, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34902535

ABSTRACT

Tributyltin chloride (TBT) is an organotin compound widely used in several high biocides for agroindustrial applications, such as fungicides, and marine antifouling paints leading to endocrine disrupting actions, such as imposex development in mollusks. In female rats, TBT has been shown to promote ovarian dysfunction, reduction of estrogen protective effect in the vascular morphophysiology, at least in part by oxidative stress consequences. Estrogen causes coronary endothelium-dependent and independent vasodilation. However, the TBT effects on cardiovascular system of male rats are not fully understood. The aim of this study was to evaluate the effects of subacute TBT exposure in aorta vascular reactivity from male wistar rats. Rats were randomly divided into three groups: control (C), TBT 500 ng/kg/day and TBT 1000 ng/kg/day. TBT was administered daily for 30 days by oral gavage. We found that TBT exposure enhanced testosterone serum levels and it was also observed obesogenic properties. TBT exposure evoked an increase in endothelium-dependent and independent phenylephrine-induced contraction, associated to an inhibition in eNOS activity. On the other hand, it was observed an enhancement of iNOS and NF-kB protein expression. We also observed an increase in oxidative stress parameters, such as superoxide dismutase (SOD) and catalase expression, and also an increase in malondialdehyde production. Finally, TBT exposure produced aortic intima-media thickness. Taken together, these data suggest a potential cardiovascular toxicological effect after subacute TBT exposure in male rats.


Subject(s)
Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Trialkyltin Compounds/toxicity , Vasoconstriction/drug effects , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Lipid Peroxidation/drug effects , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Phosphorylation , Rats, Wistar , Testosterone/blood
4.
Eur J Pharmacol ; 882: 173289, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32565337

ABSTRACT

Atherosclerosis is a multifactorial chronic disease, initiated by an endothelial dysfunction. Adenosine and its analogs can change a variety of inflammatory diseases and has shown important effects at different disease models. Inosine is a stable analogous of adenosine, but its effects in inflammatory diseases, like atherosclerosis, have not yet been studied. The aim of this study was to evaluate the pharmacological properties of inosine, administered sub chronically in a hypercholesterolemic model. Male Wistar rats were divided into four groups: control group (C) and control + inosine (C + INO) received standard chow, hypercholesterolemic diet group (HCD) and HCD + inosine (HCD + INO) were fed a hypercholesterolemic diet. At 31st experimentation day, the treatment with inosine was performed for C + INO and HCD + INO groups once daily in the last 15 days. We observed that the hypercholesterolemic diet promoted an increase in lipid levels and inflammatory cytokines production, while inosine treatment strongly decreased these effects. Additionally, HCD group presented a decrease in maximum relaxation acetylcholine induced and an increase in contractile response phenylephrine induced when compared to the control group, as well as it has presented an enhancement in collagen and ADP-induced platelet aggregation. On the other hand, inosine treatment promoted a decrease in contractile response to phenylephrine, evoked an improvement in endothelium-dependent vasorelaxant response and presented antiplatelet properties. Moreover, inosine activated eNOS and reduced p38 MAPK/NF-κB pathway in aortic tissues. Taken together, the present results indicate inosine as a potential drug for the treatment of cardiovascular disorders such as atherosclerosis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/drug therapy , Inosine/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Vasodilator Agents/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Atherosclerosis/blood , Atherosclerosis/metabolism , Blood Platelets/drug effects , Blood Platelets/physiology , Humans , Inosine/pharmacology , Interleukin-6/blood , Lipid Metabolism/drug effects , Male , NF-kappa B/metabolism , Nitric Oxide Synthase Type III/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Rats, Wistar , Tumor Necrosis Factor-alpha/blood , Vasodilator Agents/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...