Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 112: 108139, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38972100

ABSTRACT

COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.

2.
Braz J Microbiol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042245

ABSTRACT

Numerous commercial tests for the serological diagnosis of COVID-19 have been produced in recent years. However, it is important to note that these tests exhibit significant variability in their sensitivity, specificity, and accuracy of results. Therefore, the objective of this study was to utilize bioinformatics tools to map SARS-CoV-2 peptides, with the goal of developing a new serological diagnostic test for COVID-19. Two peptides from the S protein and one from the N protein were selected and characterized in silico, chemically synthesized, and used as a serological diagnostic tool to detect IgM, IgG, and IgA anti-SARS-CoV-2 antibodies through the ELISA technique, confirmed as positive and negative samples by RT-qPCR or serology by ELISA. The results showed a sensitivity, specificity, Positive Predictive Value and Negative Predictive Value of 100% (p < 00001, 95% CI) for the proposed test. Although preliminary, this study brings proof-of-concept results that are consistent with the high-performance rates of the ELISA test when compared to other well-established methods for diagnosing COVID-19.

3.
Foodborne Pathog Dis ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708682

ABSTRACT

Hepatitis E virus (HEV) infects roughly 20 million people worldwide, causing self-limiting acute hepatic disease that can evolve into a chronic course. HEV-3, HEV-4, and HEV-7 genotypes are zoonotic and transmitted to humans by consuming raw or undercooked meat. Here, we developed an indirect ELISA based on the recombinant HEV-3 capsid and performed a seroprevalence study on domestic swine in northeastern Brazil. Our in-house ELISA was initially validated using a subset of 79 sera characterized by concordant results for two distinct commercial ELISA kits. Our ELISA exhibited excellent sensitivity (94%) and specificity (100%), with an area under the curve of 0.99 Further testing, including 212 swine sera, revealed a seroprevalence of 57.5% (95% confidence interval, 50.6-64.3%). Our findings indicate that the novel ELISA test could accurately detect specific anti-HEV antibodies in domestic pigs and should be further validated in humans and other mammals.

5.
Mol Immunol ; 126: 153-164, 2020 10.
Article in English | MEDLINE | ID: mdl-32853878

ABSTRACT

Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.


Subject(s)
Crassostrea/virology , DNA Viruses/pathogenicity , Host-Pathogen Interactions/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , Animals , Aquaculture , Computational Biology , Crassostrea/genetics , Crassostrea/immunology , DNA Viruses/genetics , DNA Viruses/immunology , Gene Expression Regulation/immunology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Host-Pathogen Interactions/immunology , MicroRNAs/genetics , MicroRNAs/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...