Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Diseases ; 11(2)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37366874

ABSTRACT

Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease.

2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292931

ABSTRACT

The Wnt/ß-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer's disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3ß S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-ß oligomers (AßO) in mice. Finally, quercitrin rescues AßO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/ß-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Wnt Signaling Pathway , Amyloid beta-Peptides/pharmacology , beta Catenin/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Alzheimer Disease/pathology , Quercetin/pharmacology , Quercetin/therapeutic use
3.
Cancers (Basel) ; 13(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920762

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors.

4.
Sci Rep ; 10(1): 11681, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669593

ABSTRACT

More than 94% of colorectal cancer cases have mutations in one or more Wnt/ß-catenin signaling pathway components. Inactivating mutations in APC or activating mutations in ß-catenin (CTNNB1) lead to signaling overactivation and subsequent intestinal hyperplasia. Numerous classes of medicines derived from synthetic or natural small molecules, including alkaloids, have benefited the treatment of different diseases, including cancer, Piperine is a true alkaloid, derived from lysine, responsible for the spicy taste of black pepper (Piper nigrum) and long pepper (Piper longum). Studies have shown that piperine has a wide range of pharmacological properties; however, piperine molecular mechanisms of action are still not fully understood. By using Wnt/ß-catenin pathway epistasis experiment we show that piperine inhibits the canonical Wnt pathway induced by overexpression of ß-catenin, ß-catenin S33A or dnTCF4 VP16, while also suppressing ß-catenin nuclear localization in HCT116 cell line. Additionally, piperine impairs cell proliferation and migration in HCT116, SW480 and DLD-1 colorectal tumor cell lines, while not affecting the non-tumoral cell line IEC-6. In summary, piperine inhibits the canonical Wnt signaling pathway and displays anti-cancer effects on colorectal cancer cell lines.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Benzodioxoles/pharmacology , Gene Expression Regulation, Neoplastic , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Wnt Signaling Pathway/drug effects , Wnt3A Protein/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Benzodioxoles/isolation & purification , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , HCT116 Cells , HEK293 Cells , Humans , Piper nigrum/chemistry , Piperidines/isolation & purification , Polyunsaturated Alkamides/isolation & purification , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Signaling Pathway/genetics , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
5.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817828

ABSTRACT

The deregulation of the Wnt/ß-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/ß-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/ß-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs ß-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/ß-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.

6.
Exp Cell Res ; 383(1): 111499, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31302030

ABSTRACT

CUB domains are most exclusively found in secreted proteins and in a few transmembrane proteins. These domains are approximately 110 amino acids long and have four conserved cysteines that form a ß-sandwich fold. CUB domains proteins are involved in a wide range of biological functions. We have shown that CUB domains from Tolloid/BMP1 can bind BMP4 and block BMP signaling in the developing frog embryo. CUB domain-containing protein 1 (CDCP1) is one of the few transmembrane glycoprotein that contains three extracellular CUB domains and regulates anchorage-independent growth and cancer cell migration through activation of Src kinases. In the extracellular space, only a few proteins were found to interact with CDCP1 and at the moment no ligand was found. We demonstrate by using real time protein interaction on BIAcore chip that CDCP1 CUB domains bind directly to TGF-ß1 and BMP4. CDCP1 enhances TGF-ß1 signaling reporter activity and phosphorylated Smad2 levels but does not modulate BMP signaling pathway. CDCP1 actions on TGF-ß/Smad2 signaling are dependent on Smad2 and TGFRI and do not require Src or PKCδ binding. Our findings uncover a new co-receptor for TGF-ß1 and bring up new questions on whether CDCP1 cooperates with TGF-ß1 to promote cancer progression.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Smad2 Protein/metabolism , Transforming Growth Factor beta1/metabolism , src-Family Kinases/metabolism , HeLa Cells , Humans , Phosphorylation
7.
PLoS One ; 10(8): e0133689, 2015.
Article in English | MEDLINE | ID: mdl-26241738

ABSTRACT

Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFß, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.


Subject(s)
Astrocytes/drug effects , Connective Tissue Growth Factor/pharmacology , Fibronectins/biosynthesis , Animals , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Fibronectins/genetics , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Glioblastoma/pathology , Humans , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nestin/analysis , Nestin/biosynthesis , Nestin/genetics , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Recombinant Proteins/pharmacology , SOXB1 Transcription Factors/analysis , Xenopus Proteins/pharmacology
8.
PLoS One ; 10(3): e0120919, 2015.
Article in English | MEDLINE | ID: mdl-25775405

ABSTRACT

Overactivation of the Wnt/ß-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/ß-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/ß-catenin pathway. Both chalcones are able to affect the cell distribution of ß-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/ß-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/ß-catenin pathway and colon cancer cell growth in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Colonic Neoplasms/metabolism , Flavonoids/pharmacology , Hemiterpenes/pharmacology , Wnt Signaling Pathway , Animals , Cell Proliferation/drug effects , Chalcones/chemistry , HCT116 Cells , Hemiterpenes/chemistry , Humans , Xenopus , beta Catenin/genetics , beta Catenin/metabolism
9.
J Biol Chem ; 289(51): 35456-67, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25359775

ABSTRACT

Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/ß-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/ß-catenin, where the flavonoid acts downstream of ß-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/ß-catenin and should be further investigated as a potential novel anti-tumoral agent.


Subject(s)
Cell Proliferation/drug effects , Quercetin/analogs & derivatives , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Body Patterning/drug effects , Body Patterning/genetics , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Early Growth Response Protein 2/genetics , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , HCT116 Cells , Humans , Immunohistochemistry , In Situ Hybridization , Lithium Chloride/pharmacology , Quercetin/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Wnt Signaling Pathway/genetics , Xenopus/embryology , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/genetics , beta Catenin/genetics
10.
Int J Mol Sci ; 15(7): 12094-106, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25007066

ABSTRACT

It is now well documented that natural products have played an important role in anticancer therapy. Many studies focus on the ability of these natural compounds to modulate tumor-related signaling pathways and the relationship of these properties to an anticancer effect. According to the World Health Organization (WHO), colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death among men and women. Therefore, finding strategies to fight against CRC is an emergent health problem. CRC has a strong association with deregulation of Wnt/ß-catenin signaling pathway. As some types of natural compounds are capable of modulating the Wnt/ß-catenin signaling, one important question is whether they could counteract CRC. In this review, we discuss the role of flavonoids, a class of natural compounds, on Wnt/ß-catenin regulation and its possible potential for therapeutic usage on colorectal cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/metabolism , Flavonoids/therapeutic use , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Flavonoids/pharmacology , Humans , Wnt Proteins/genetics , beta Catenin/genetics
11.
PLoS One ; 8(1): e55605, 2013.
Article in English | MEDLINE | ID: mdl-23383241

ABSTRACT

Connective-tissue growth factor (CTGF/CCN2) is a matricellular-secreted protein involved in complex processes such as wound healing, angiogenesis, fibrosis and metastasis, in the regulation of cell proliferation, migration and extracellular matrix remodeling. Glioblastoma (GBM) is the major malignant primary brain tumor and its adaptation to the central nervous system microenvironment requires the production and remodeling of the extracellular matrix. Previously, we published an in vitro approach to test if neurons can influence the expression of the GBM extracellular matrix. We demonstrated that neurons remodeled glioma cell laminin. The present study shows that neurons are also able to modulate CTGF expression in GBM. CTGF immnoreactivity and mRNA levels in GBM cells are dramatically decreased when these cells are co-cultured with neonatal neurons. As proof of particular neuron effects, neonatal neurons co-cultured onto GBM cells also inhibit the reporter luciferase activity under control of the CTGF promoter, suggesting inhibition at the transcription level. This inhibition seems to be contact-mediated, since conditioned media from embryonic or neonatal neurons do not affect CTGF expression in GBM cells. Furthermore, the inhibition of CTGF expression in GBM/neuronal co-cultures seems to affect the two main signaling pathways related to CTGF. We observed inhibition of TGFß luciferase reporter assay; however phopho-SMAD2 levels did not change in these co-cultures. In addition levels of phospho-p44/42 MAPK were decreased in co-cultured GBM cells. Finally, in transwell migration assay, CTGF siRNA transfected GBM cells or GBM cells co-cultured with neurons showed a decrease in the migration rate compared to controls. Previous data regarding laminin and these results demonstrating that CTGF is down-regulated in GBM cells co-cultured with neonatal neurons points out an interesting view in the understanding of the tumor and cerebral microenvironment interactions and could open up new strategies as well as suggest a new target in GBM control.


Subject(s)
Cell Communication , Connective Tissue Growth Factor/metabolism , Glioblastoma/metabolism , Neurons/metabolism , Animals , Cell Line, Tumor , Cell Movement , Coculture Techniques , Connective Tissue Growth Factor/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Primary Cell Culture , Promoter Regions, Genetic , Rats , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transcriptional Activation , Transforming Growth Factor beta/metabolism
12.
Curr Top Med Chem ; 12(19): 2103-13, 2012.
Article in English | MEDLINE | ID: mdl-23167799

ABSTRACT

Maternal Wnt/ß-Catenin signaling is essential to establish dorsal-specific gene expression required for axial patterning in Xenopus. Deregulation of this pathway causes axis phenotypes in frog embryos. In adult life, mutations in the Wnt pathway components are associated with many diseases, such as polyposis coli; osteoporosis-pseudoglioma syndrome (OPPG); skeletal dysplasia; neural tube defects, cancer and many others. Thus, a better understanding of Wnt/ß-catenin signaling will have great and significant impact on Biology and Medicine. In this aspect, natural compounds are potential targets as novel molecules that could modulate the Wnt pathway. For instance, flavonoids are a large group of natural compounds found in plants that modulate important cellular and molecular mechanisms related to diseases, but the specific in vivo mechanism of action of most flavonoids remain unknown. In this way, Xenopus embryos may provide an efficient model, since it is frequently used to test and identify the role of molecules that affect Wnt/ß-catenin signaling. Here, we describe a combination of approaches to outline and characterize the role of two flavonoids, quercetin and rutin, on Wnt/ß-catenin signaling, using Xenopus embryos as an experimental model. Our data support that quercetin is potential in vivo modulator of canonical Wnt signaling and that this effect might depend on the structure of this molecule, as we did not observe any effect with rutin treatment, a flavonol structurally-related to quercetin. This model is useful to analyze effects of quercetin and other flavonoids in vivo and to provide further understanding of how natural compounds can modulate signaling pathways, using Xenopus embryos as a fast and efficient reading of in vivo effects of those compounds.


Subject(s)
Biological Products/pharmacology , Drug Discovery , Embryonic Development/drug effects , Signal Transduction/drug effects , Wnt Proteins/metabolism , Xenopus/embryology , beta Catenin/metabolism , Animals , Base Sequence , DNA Primers , Reverse Transcriptase Polymerase Chain Reaction
13.
Dev Biol ; 365(2): 350-62, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22426006

ABSTRACT

Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-ß-cyclodextrin (MßCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MßCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MßCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.


Subject(s)
Body Patterning , Cholesterol/metabolism , Membrane Microdomains/metabolism , Prosencephalon/embryology , Animals , Chick Embryo , Membrane Microdomains/drug effects , Organizers, Embryonic/metabolism , Xenopus laevis , beta-Cyclodextrins/pharmacology
14.
Biochem Biophys Res Commun ; 413(4): 582-7, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21925146

ABSTRACT

Connective tissue growth factor (CTGF/CCN2) is a protein of the CCN family that modulates cell-ECM interactions in a variety of cell types. In this study, we investigated the chemotactic and adhesive properties of CCN2 protein in embryonic teratocarcinoma P19 cells. Initially, P19 cells were attracted to CCN2-coated agarose beads. In Boyden chamber experiments, CCN2-containing medium induced a threefold greater migration of P19 cells. CCN2 adhesion properties were studied by using optical tweezers. The specific adhesion times of P19 cells to polystyrene beads coated with laminin, fibronectin, CCN2 and bovine serum albumin were 1.8 ± 0.5s, 2.7 ± 0.4s, 10 ± 2s and 13 ± 2s, respectively, revealing an unexpectedly low adhesive capacity of CCN2 protein for P19 cells. In conclusion, our findings support the chemoattractive role of CCN2 for P19 cells, but not its adhesive role when compared to laminin or fibronectin.


Subject(s)
Chemotaxis , Connective Tissue Growth Factor/physiology , Embryonal Carcinoma Stem Cells/pathology , Animals , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Connective Tissue Growth Factor/pharmacology , Embryonal Carcinoma Stem Cells/metabolism , Mice , Sepharose/chemistry
15.
Genes Dev ; 23(21): 2551-62, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19884260

ABSTRACT

In Xenopus embryos, a dorsal-ventral patterning gradient is generated by diffusing Chordin/bone morphogenetic protein (BMP) complexes cleaved by BMP1/Tolloid metalloproteinases in the ventral side. We developed a new BMP1/Tolloid assay using a fluorogenic Chordin peptide substrate and identified an unexpected negative feedback loop for BMP4, in which BMP4 inhibits Tolloid enzyme activity noncompetitively. BMP4 binds directly to the CUB (Complement 1r/s, Uegf [a sea urchin embryonic protein] and BMP1) domains of BMP1 and Drosophila Tolloid with high affinity. Binding to CUB domains inhibits BMP4 signaling. These findings provide a molecular explanation for a long-standing genetical puzzle in which antimorphic Drosophila tolloid mutant alleles displayed anti-BMP effects. The extensive Drosophila genetics available supports the relevance of the interaction described here at endogenous physiological levels. Many extracellular proteins contain CUB domains; the binding of CUB domains to BMP4 suggests a possible general function in binding transforming growth factor-beta (TGF-beta) superfamily members. Mathematical modeling indicates that feedback inhibition by BMP ligands acts on the ventral side, while on the dorsal side the main regulator of BMP1/Tolloid enzymatic activity is the binding to its substrate, Chordin.


Subject(s)
Bone Morphogenetic Protein 1/antagonists & inhibitors , Bone Morphogenetic Protein 4/metabolism , Drosophila Proteins/metabolism , Enzyme Inhibitors/metabolism , Tolloid-Like Metalloproteinases/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Body Patterning , Complement C1r/metabolism , Complement C1s/metabolism , Drosophila melanogaster , Embryo, Nonmammalian , Feedback, Physiological , Protein Structure, Tertiary
16.
J Biol Chem ; 283(14): 9359-68, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18234671

ABSTRACT

The amyloid-beta peptide (Abeta) plays a major role in neuronal dysfunction and neurotoxicity in Alzheimer disease. However, the signal transduction mechanisms involved in Abeta-induced neuronal dysfunction remain to be fully elucidated. A major current unknown is the identity of the protein receptor(s) involved in neuronal Abeta binding. Using phage display of peptide libraries, we have identified a number of peptides that bind Abeta and are homologous to neuronal receptors putatively involved in Abeta interactions. We report here on a cysteine-linked cyclic heptapeptide (denominated cSP5) that binds Abeta with high affinity and is homologous to the extracellular cysteine-rich domain of several members of the Frizzled (Fz) family of Wnt receptors. Based on this homology, we investigated the interaction between Abeta and Fz. The results show that Abeta binds to the Fz cysteine-rich domain at or in close proximity to the Wnt-binding site and inhibits the canonical Wnt signaling pathway. Interestingly, the cSP5 peptide completely blocks Abeta binding to Fz and prevents inhibition of Wnt signaling. These results indicate that the Abeta-binding site in Fz is homologous to cSP5 and that this is a relevant target for Abeta-instigated neurotoxicity. Furthermore, they suggest that blocking the interaction of Abeta with Fz might lead to novel therapeutic approaches to prevent neuronal dysfunction in Alzheimer disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Frizzled Receptors/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Binding Sites , Cell Line , Humans , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Protein Binding/drug effects , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction/drug effects
17.
Differentiation ; 75(3): 184-92, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17359297

ABSTRACT

Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.


Subject(s)
Cholesterol/metabolism , Muscle Fibers, Skeletal/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chick Embryo/metabolism , Frizzled Receptors/metabolism , Humans , Models, Biological , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Transfection , Wnt Proteins/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , beta-Cyclodextrins/pharmacology
18.
Differentiation ; 74(9-10): 562-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17177853

ABSTRACT

The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.


Subject(s)
Astrocytes/chemistry , Brain Neoplasms/physiopathology , Brain/cytology , Glioblastoma/physiopathology , Laminin/analysis , Neurites/ultrastructure , Neurons/physiology , Animals , Astrocytes/cytology , Astrocytes/physiology , Brain Neoplasms/chemistry , Brain Neoplasms/pathology , Cell Differentiation , Cells, Cultured , Glioblastoma/chemistry , Glioblastoma/pathology , Humans , Neurites/metabolism , Neurons/metabolism , Rats , Rats, Wistar
19.
Brain Res Dev Brain Res ; 142(2): 111-9, 2003 May 14.
Article in English | MEDLINE | ID: mdl-12711362

ABSTRACT

Astrocytes located in two distinct regions of midbrain differ in their neuritic growth support abilities. Midbrain neurons cultured onto astrocyte monolayers from the lateral (L) region develop long and branched neurites while neurons cultured onto astrocyte monolayers from the medial (M) region develop short or no neurites. The extracellular matrix of these astrocytes has an important role in promoting or inhibiting the growth of these neurons. Differences on the compartmental distribution, as well as on the concentration of GAGs of L and M astrocytes, may be related to their differential capacity of supporting neuritic growth. Indeed, enzymatic digestion of heparan sulfate (HS) and chondroitin sulfate (CS) chains also pointed to an important function for GAGs on axon navigation. In order to better characterize the role of CS on the growth of midbrain neurites, we treated L and M astrocyte monolayers with 1 mM of beta-D-xyloside. Under these conditions, astrocytes oversynthesized and secreted CS protein-free chains to the culture medium. M astrocytes had a significant reduction in their neuritic growth-inhibiting ability after xyloside treatment, suggesting a promoting role for soluble CS in neuritic growth. Chondroitin 4-sulfate (CS-4) added in different concentrations to M astrocyte cultures turned this glia into a permissive substrate, acting in a linear way as far as the largest neurite was concerned. However, a U-shaped dose-effect curve on neurite growth resulted from the similar treatment of L astrocytes. These results suggest that glial CS-4 could be involved in the neurite growth modulating properties of midbrain neurons in a complex concentration-dependent way.


Subject(s)
Astrocytes/metabolism , Cell Differentiation/physiology , Chondroitin Sulfates/metabolism , Extracellular Matrix/metabolism , Growth Substances/metabolism , Mesencephalon/growth & development , Neurites/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Cell Communication/drug effects , Cell Communication/physiology , Cell Differentiation/drug effects , Cells, Cultured , Chondroitin Sulfates/pharmacology , Dose-Response Relationship, Drug , Glycosaminoglycans/metabolism , Glycosides/pharmacology , Mesencephalon/cytology , Mesencephalon/metabolism , Mice , Neurites/drug effects , Neurites/ultrastructure , Proteoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...