Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 17588, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30487587

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 8(1): 1341, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358662

ABSTRACT

Understanding relationships between genes responsible for enzymatic hydrolysis of cellulose and synergistic reactions is fundamental for improving biomass biodegradation technologies. To reveal synergistic reactions, the transcriptome, exoproteome, and enzymatic activities of extracts from Trichoderma harzianum, Trichoderma reesei and Trichoderma atroviride under biodegradation conditions were examined. This work revealed co-regulatory networks across carbohydrate-active enzyme (CAZy) genes and secreted proteins in extracts. A set of 80 proteins and respective genes that might correspond to a common system for biodegradation from the studied species were evaluated to elucidate new co-regulated genes. Differences such as one unique base pair between fungal genomes might influence enzyme-substrate binding sites and alter fungal gene expression responses, explaining the enzymatic activities specific to each species observed in the corresponding extracts. These differences are also responsible for the different architectures observed in the co-expression networks.


Subject(s)
Enzymes/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Proteomics/methods , Trichoderma/physiology , Biological Products/analysis , Biomass , Cellulose/chemistry , Enzymes/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Hydrolysis , Phylogeny , Sequence Analysis, RNA/methods
3.
Plant Physiol Biochem ; 49(8): 917-22, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21641227

ABSTRACT

In plant-pathogen interaction, the hydrogen peroxide (H2O2) may play a dual role: its accumulation inhibits the growth of biotrophic pathogens, while it could help the infection/colonization process of plant by necrotrophic pathogens. One of the possible pathways of H2O production involves oxalic acid (Oxa) degradation by apoplastic oxalate oxidase. Here, we analyzed the production of H2O2, the presence of calcium oxalate (CaOx) crystals and the content of Oxa and ascorbic acid (Asa)--the main precursor of Oxa in plants--in susceptible and resistant cacao (Theobroma cacao L.) infected by the hemibiotrophic fungus Moniliophthora perniciosa. We also quantified the transcript level of ascorbate peroxidase (Apx), germin-like oxalate oxidase (Glp) and dehydroascorbate reductase (Dhar) by RT-qPCR. We report that the CaOx crystal amount and the H2O2 levels in the two varieties present distinct temporal and genotype-dependent patterns. Susceptible variety accumulated more CaOx crystals than the resistant one, and the dissolution of these crystals occurred in the early infection steps and in the final stage of the disease in the resistant and the susceptible variety, respectively. High expression of the Glp and accumulation of Oxa were observed in the resistant variety. The content of Asa increased in the inoculated susceptible variety, but remained constant in the resistant one. The susceptible variety presented reduced Dhar expression. The role of H2O2 and its formation from Oxa via Apx and Glp in resistant and susceptible variety infected by M. perniciosa were discussed.


Subject(s)
Agaricales/pathogenicity , Cacao/microbiology , Hydrogen Peroxide/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Cacao/metabolism , Calcium Oxalate/metabolism , Genetic Predisposition to Disease , Genotype , Oxalic Acid/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Diseases/microbiology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...