Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 954, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046463

ABSTRACT

Plant species of the Brazilian Caatinga experience seasonal wet and dry extremes, requiring seasonally different leaf characteristics for optimizing water availability. We investigated if Croton blanchetianus Baill exhibits leaf morphoanatomical traits across seasons and positioning in sunlight/natural shade. Leaves of ten 1-3 m tall plants in full sunlight and ten in natural shade were assessed in May, July (wet season), October and December (dry season) 2015 for gas exchange, leaf size, lamina and midrib cross sections (14 parameters), and chloroplast structure (5 parameters). Net photosynthesis was greater during the wet season (21.6 µm-2 s-1) compared to the dry season (5.8 µm-2 s-1) and was strongly correlated with almost all measured parameters (p < 0.01). Shaded leaves in the wet season had higher specific leaf area (19.9 m2 kg-1 in full-sun and 23.1 m2 kg-1 in shade), but in the dry season they did not differ from those in full sun (7.5 m2 kg-1 and 7.2 m2 kg-1). In the wet season, the expansion of the adaxial epidermis and mesophyll lead to larger and thicker photosynthetic area of leaves. Furthermore, chloroplast thickness, length and area were also significantly larger in full sunlight (2.1 µm, 5.1 µm, 15.2 µm2; respectively) and shaded plants (2.0 µm, 5.2 µm, 14.8 µm2; respectively) during wetter months. Croton blanchetianus exhibits seasonal plasticity in leaf structure, presumably to optimize water use efficiency during seasons of water abundance and deficit. These results suggest that the species is adaptable to the increased drought stress projected by climate change scenarios.


Subject(s)
Adaptation, Physiological , Croton/growth & development , Plant Leaves/growth & development , Rain , Seasons , Brazil , Croton/anatomy & histology , Droughts , Forests , Plant Leaves/anatomy & histology
2.
Sci Total Environ ; 705: 135717, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31838428

ABSTRACT

The semi-arid region of Northeast Brazil (NEB) experiences severe droughts during El Niño Southern Oscillation (ENSO) years, with major impacts on the dynamics of the native vegetation (Caatinga). However, the effect of these droughts on carbon cycling is not well understood. Here, a numerical model is used to investigate the influence of variations in Pacific and Atlantic sea surface temperatures (SST) on drought and carbon dynamics of the Caatinga during past ENSO events. We demonstrate that precipitation reductions in the Caatinga have a strong influence on vegetation dynamics, with net primary production (NPP) remaining low throughout the droughts. Furthermore, the Caatinga acts as a carbon sink, even in years of severe drought. However, net ecosystem exchange (NEE) is lower in years of low NPP rates, resulting in long periods with limited ecosystem activity. The SST patterns indicate that extreme vegetation changes in the Caatinga are associated with the combination of ENSO events and North Atlantic SST warming.


Subject(s)
El Nino-Southern Oscillation , Forests , Brazil , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...