Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Protein Chem Struct Biol ; 141: 539-562, 2024.
Article in English | MEDLINE | ID: mdl-38960485

ABSTRACT

Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.


Subject(s)
Metalloproteins , Snake Venoms , Animals , Humans , Snake Venoms/metabolism , Snake Venoms/chemistry , Snake Venoms/enzymology , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/antagonists & inhibitors
2.
Talanta ; 205: 120100, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31450412

ABSTRACT

An extraction method based on a multivariate analytical approach was developed for enhancement of the phenolic compounds in cashew nut extracts. The different extractor solvents (acetone, water, ethanol, and methanol) and their binary, ternary, and quaternary combinations were evaluated using a simplex-centroid design and surface response methodology. The special cubic model exhibits no lack of fit and explains 89.2% of the variance. The total phenolic measurements by the Folin-Ciocalteu method revealed the highest values for ethanol (5.93 mg GAE g-1) and acetone-methanol-ethanol ternary mixture (5.92 mg GAE g-1) extracts. ESI (-)-Q/TOFMS analyses combined with PCA and HCA revealed the presence of fatty acids, phospholipids, and sugars in the ternary mixture cashew extract, while for the ethanol extract only phenolic compounds, such as anacardic acids and derivatives, were found. The proposed approach was adequate to reach the optimal extractor which ethanol, a low-toxicity solvent, enabled the selective extraction of a high content of phenolic compounds from cashew nuts.


Subject(s)
Anacardic Acids/analysis , Anacardium/chemistry , Nuts/chemistry , Solid Phase Extraction/methods , Acetone/chemistry , Anacardic Acids/isolation & purification , Cluster Analysis , Ethanol/chemistry , Methanol/chemistry , Multivariate Analysis , Principal Component Analysis , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...