Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 168(3): 238-250, 2024 03.
Article in English | MEDLINE | ID: mdl-38332572

ABSTRACT

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Subject(s)
Antipsychotic Agents , Clozapine , Animals , Humans , Clozapine/pharmacology , Haloperidol/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Dizocilpine Maleate/pharmacology , Proteome/metabolism , N-Methylaspartate , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Proteomics , Antipsychotic Agents/pharmacology , Brain/metabolism
2.
J Vis Exp ; (153)2019 11 05.
Article in English | MEDLINE | ID: mdl-31762466

ABSTRACT

Organotypic, or slice cultures, have been widely employed to model aspects of the central nervous system functioning in vitro. Despite the potential of slice cultures in neuroscience, studies using adult nervous tissue to prepare such cultures are still scarce, particularly those from human subjects. The use of adult human tissue to prepare slice cultures is particularly attractive to enhance the understanding of human neuropathologies, as they hold unique properties typical of the mature human brain lacking in slices produced from rodent (usually neonatal) nervous tissue. This protocol describes how to use brain tissue collected from living human donors submitted to resective brain surgery to prepare short-term, free-floating slice cultures. Procedures to maintain and perform biochemical and cell biology assays using these cultures are also presented. Representative results demonstrate that the typical human cortical lamination is preserved in slices after 4 days in vitro (DIV4), with expected presence of the main neural cell types. Moreover, slices at DIV4 undergo robust cell death when challenged with a toxic stimulus (H2O2), indicating the potential of this model to serve as a platform in cell death assays. This method, a simpler and cost-effective alternative to the widely used protocol using membrane inserts, is mainly recommended for running short-term assays aimed to unravel mechanisms of neurodegeneration behind age-associated brain diseases. Finally, although the protocol is devoted to using cortical tissue collected from patients submitted to surgical treatment of pharmacoresistant temporal lobe epilepsy, it is argued that tissue collected from other brain regions/conditions should also be considered as sources to produce similar free-floating slice cultures.


Subject(s)
Brain/cytology , Neurons/physiology , Adult , Animals , Brain/metabolism , Cell Death , Humans , Hydrogen Peroxide/metabolism , Organ Culture Techniques
3.
BMC Pregnancy Childbirth ; 16: 30, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26846412

ABSTRACT

BACKGROUND: A genetic predisposition to Preterm Labor (PTL) and Preterm Premature Rupture of Membranes (PPROM) has been suggested; however the relevance of polymorphisms and ancestry to susceptibility to PTL and PPROM in different populations remains unclear. The aim of this study was to evaluate the contribution of maternal and fetal SNPs in the IL1B, IL6, IL6R, TNFA, TNFR, IL10, TLR2, TLR4, MMP9, TIMP1 and TIMP2 genes and the influence of ancestry background in the susceptibility to PTL or PPROM in Brazilian women. METHODS: Case-control study conducted at a tertiary hospital in São Paulo State, Brazil. We included women with PTL or PPROM and their babies (PTL: 136 women and 88 babies; PPROM: 65 women and 44 babies). Control group included 402 mother-babies pairs of term deliveries. Oral swabs were collected for identification of AIMs by fragment analysis and SNPs by Taqman® SNP Genotyping Assays and PCR. Linkage Disequilibrium and Hardy-Weinberg proportions were evaluated using Genepop 3.4. Haplotypes were inferred using the PHASE algorithm. Allele, genotype and haplotype frequencies were compared by Fisher's exact test or χ (2) and Odds Ratio. Logistic regression was performed. Clinical and sociodemographic data were analyzed by Fisher's exact test and Mann-Whitney. RESULTS: PTL was associated with European ancestry and smoking while African ancestry was protective. The fetal alleles IL10-592C (rs800872) and IL10-819C (rs1800871) were also associated with PTL and the maternal haplotype TNFA-308G-238A was protective. Maternal presence of IL10-1082G (rs1800896) and TLR2A (rs4696480) alleles increased the risk for PPROM while TNFA-238A (rs361525) was protective. Family history of PTL/PPROM was higher in cases, and time to delivery was influenced by IL1B-31T (rs1143627) and TLR4-299G (rs4986790). CONCLUSION: There is an association between European ancestry and smoking and PTL in our Brazilian population sample. The presence of maternal or fetal alleles that modify the inflammatory response increase the susceptibility to PTL and PPROM. The family history of PTL/PPROM reinforces a role for genetic polymorphisms in susceptibility to these outcomes.


Subject(s)
Cytokines/genetics , Fetal Membranes, Premature Rupture/genetics , Obstetric Labor, Premature/genetics , Pedigree , Polymorphism, Single Nucleotide , Adult , Alleles , Black People/genetics , Brazil , Case-Control Studies , Female , Genetic Markers , Haplotypes , Humans , Infant, Newborn , Interleukin-10/genetics , Pregnancy , Smoking/adverse effects , Toll-Like Receptor 2/genetics , Tumor Necrosis Factor-alpha/genetics , White People/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL