Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4579, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941303

ABSTRACT

Human α2-macroglobulin (hα2M) is a large homotetrameric protein involved in the broad inhibition of endopeptidases. Following cleavage within a bait region, hα2M undergoes stepwise transitions from its native, expanded, highly flexible, active conformation to an induced, compact, triggered conformation. As a consequence, the peptidase is entrapped by an irreversible Venus flytrap mechanism. Given the importance of hα2M, biochemical studies galore over more than seven decades have attempted to ascertain its role, typically using authentic hα2M purified from frozen and non-frozen fresh blood plasma, and even outdated plasma. However, hα2M is sensitive once isolated and purified, and becomes heterogeneous during storage and/or freezing, raising concerns about the functional competence of frozen plasma-derived hα2M. We therefore used a combination of native and sodium dodecylsulfate polyacrylamide gel electrophoresis, affinity and ion-exchange chromatography, multi-angle laser light scattering after size-exclusion chromatography, free cysteine quantification, and peptidase inhibition assays with endopeptidases of two catalytic classes and three protein substrates, to characterize the biochemical and biophysical properties of hα2M purified ad hoc either from fresh plasma or frozen fresh plasma after thawing. We found no differences in the molecular or functional properties of the preparations, indicating that protective components in plasma maintain native hα2M in a functionally competent state despite freezing.


Subject(s)
Endopeptidases , Peptide Hydrolases , Plasma , Humans , Freezing , Macroglobulins
2.
Dalton Trans ; 52(12): 3610-3622, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36857690

ABSTRACT

Peptidases are regulated by latency and inhibitors, as well as compatibilization and cofactors. Ulilysin from Methanosarcina acetivorans, also called lysargiNase, is an archaeal metallopeptidase (MP) that is biosynthesized as a zymogen with a 60-residue N-terminal prosegment (PS). In the presence of calcium, it self-activates to yield the mature enzyme, which specifically cleaves before basic residues and thus complements trypsin in proteomics workflows. Here, we obtained a low-resolution crystal structure of proulilysin, in which 28 protomers arranged as 14 dimers form a continuous double helix of 544 Å pitch that parallels cell axis b of the crystal. The PS includes two α-helices and obstructs the active-site cleft of the catalytic domain (CD) by traversing it in the opposite orientation of a substrate, and a cysteine blocks the catalytic zinc according to a "cysteine-switch mechanism". Moreover, the PS interacts through its first helix with an "S-loop" of the CD, which acts as an "activation segment" that lacks one of two essential calcium cations. Upon PS removal during maturation, the S-loop adopts its competent conformation and binds the second calcium ion. Next, we found that in addition to general MP inhibitors, ulilysin was competitively and reversibly inhibited by 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF; Ki = 4 µM). This is a compound that normally forms an irreversible covalent complex with serine peptidases but does not inhibit MPs. A high-resolution crystal structure of the complex revealed that the inhibitor penetrates the specificity pocket of ulilysin. A primary amine of the inhibitor salt-bridges an aspartate at the pocket bottom, thus mimicking the basic side chain of substrates. In contrast, the sulfonyl fluoride warhead is not involved and the catalytic zinc ion is freely accessible. Thus, the usage of inhibitor cocktails of peptidases, which typically contain AEBSF at ∼25-fold higher concentrations than the determined Ki, should be avoided when working with ulilysin. Finally, the structure of the complex, which occurred as a crystallographic dimer recurring in previous mature ulilysin structures, unveiled an N-terminal product fragment that delineated the non-primed side of the cleft. These results complement prior structures of ulilysin with primed-side product fragments and inhibitors.


Subject(s)
Calcium , Fluorides , Cysteine , Metalloproteases/chemistry , Peptide Hydrolases/metabolism , Zinc , Serine , Crystallography, X-Ray , Protein Conformation
3.
Nat Commun ; 13(1): 5661, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192397

ABSTRACT

Antibodies, and antibody derivatives such as nanobodies, contain immunoglobulin-like (Ig) ß-sandwich scaffolds which anchor the hypervariable antigen-binding loops and constitute the largest growing class of drugs. Current engineering strategies for this class of compounds rely on naturally existing Ig frameworks, which can be hard to modify and have limitations in manufacturability, designability and range of action. Here, we develop design rules for the central feature of the Ig fold architecture-the non-local cross-ß structure connecting the two ß-sheets-and use these to design highly stable Ig domains de novo, confirm their structures through X-ray crystallography, and show they can correctly scaffold functional loops. Our approach opens the door to the design of antibody-like scaffolds with tailored structures and superior biophysical properties.


Subject(s)
Single-Domain Antibodies , Amino Acid Sequence , Antibodies/chemistry , Complementarity Determining Regions , Immunoglobulin Domains , Models, Molecular , Protein Conformation
4.
Nat Commun ; 13(1): 4446, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915115

ABSTRACT

The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-ß pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded ß-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase.


Subject(s)
Celiac Disease , Animals , Celiac Disease/drug therapy , Celiac Disease/genetics , Enzyme Precursors , Gliadin/chemistry , Gliadin/metabolism , Glutamic Acid , Glutens/chemistry , Mice , Prolyl Oligopeptidases , Sarraceniaceae/enzymology
6.
Proc Natl Acad Sci U S A ; 119(19): e2200102119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500114

ABSTRACT

Human α2-macroglobulin (hα2M) is a multidomain protein with a plethora of essential functions, including transport of signaling molecules and endopeptidase inhibition in innate immunity. Here, we dissected the molecular mechanism of the inhibitory function of the ∼720-kDa hα2M tetramer through eight cryo­electron microscopy (cryo-EM) structures of complexes from human plasma. In the native complex, the hα2M subunits are organized in two flexible modules in expanded conformation, which enclose a highly porous cavity in which the proteolytic activity of circulating plasma proteins is tested. Cleavage of bait regions exposed inside the cavity triggers rearrangement to a compact conformation, which closes openings and entraps the prey proteinase. After the expanded-to-compact transition, which occurs independently in the four subunits, the reactive thioester bond triggers covalent linking of the proteinase, and the receptor-binding domain is exposed on the tetramer surface for receptor-mediated clearance from circulation. These results depict the molecular mechanism of a unique suicidal inhibitory trap.


Subject(s)
Peptide Hydrolases , alpha-Macroglobulins , Cryoelectron Microscopy , Endopeptidases/metabolism , Humans , Peptide Hydrolases/metabolism , Protein Conformation , Transcription Factors , alpha-Macroglobulins/chemistry , alpha-Macroglobulins/metabolism
7.
Comput Struct Biotechnol J ; 20: 534-544, 2022.
Article in English | MEDLINE | ID: mdl-35465156

ABSTRACT

Aureolysin, a secreted metallopeptidase (MP) from the thermolysin family, functions as a major virulence factor in Staphylococcus aureus. No specific aureolysin inhibitors have yet been described, making this an important target for the development of novel antimicrobial drugs in times of rampant antibiotic resistance. Although small-molecule inhibitors are currently more common in the clinic, therapeutic proteins and peptides (TPs) are favourable due to their high selectivity, which reduces off-target toxicity and allows dosage tuning. The greater wax moth Galleria mellonella produces a unique defensive protein known as the insect metallopeptidase inhibitor (IMPI), which selectively inhibits some thermolysins from pathogenic bacteria. We determined the ability of IMPI to inhibit aureolysin in vitro and used crystal structures to ascertain its mechanism of action. This revealed that IMPI uses the "standard mechanism", which has been poorly characterised for MPs in general. Accordingly, we designed a cohort of 12 single and multiple point mutants, the best of which (I57F) inhibited aureolysin with an estimated inhibition constant (K i) of 346 nM. Given that animals lack thermolysins, our strategy may facilitate the development of safe TPs against staphylococcal infections, including strains resistant to conventional antibiotics.

8.
Sci Rep ; 10(1): 6317, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286475

ABSTRACT

Matrix metalloproteinases (MMPs) occur in 23 human paralogues with key functions in physiology, and their activity is controlled by protein inhibitors. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), which is essential for embryogenesis and tumour suppression, has been reported to inhibit MMPs. Here, we developed eukaryotic and bacterial expression systems for different RECK variants and analysed their inhibitory capacity against representative MMPs in vitro. We could not detect any significant inhibition. Instead, we found that partially purified RECK from the conditioned medium of transfected Expi293F cells but not that of ExpiCHO-S or Drosophila Schneider cells contained a contaminant with proteolytic activity. The contaminant was removed through treatment with a small-molecule serine peptidase inhibitor and additional chromatographic purification. A tantamount contaminant was further detected in an equivalent expression system of the N-terminal fragment of the proteoglycan testican 3, but not in those of two other proteins. These results indicate that previous reports of inhibitory activity of recombinant RECK on MMPs, which were performed with partially purified samples, were probably masked by a coeluting contaminant present in the supernatant of HEK293-derived cells. Thus, RECK is probably not a direct inhibitor of MMP catalytic activity but may still regulate MMPs through other mechanisms.


Subject(s)
GPI-Linked Proteins/metabolism , Matrix Metalloproteinase Inhibitors/metabolism , Matrix Metalloproteinases/metabolism , Animals , CHO Cells , Cricetulus , Drosophila melanogaster , Enzyme Assays , GPI-Linked Proteins/genetics , GPI-Linked Proteins/isolation & purification , HEK293 Cells , Humans , Matrix Metalloproteinase Inhibitors/isolation & purification , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...