Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 753: 141976, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32889320

ABSTRACT

Air pollution legislation and control worldwide is based on the size of particulate matter (PM) to evaluate the effects on environmental and human health, in which the small diameter particles are considered more dangerous than larger sizes. This study investigates the composition, stability, size and dispersion of atmospheric settleable particulate matter (SePM) in an aqueous system. We aimed to interrogate the changes in the physical properties and characteristics that can contribute to increased metal uptake by aquatic biota. Samples collected in an area influenced by the steel and iron industry were separated into 8 fractions (425 to ≤10 µm) and analysed physically and chemically. Results from ICP-MS and X-ray showed that the PM composition was mainly hematite with 80% of Fe, followed by Al, Mn and Ti. Among 27 elements analysed we found 19 metals, showing emerging metallic contaminants such as Y, Zr, Sn, La, Ba and Bi. Scanning electron microscopy (SEM) showed that SePM fractions are formed by an agglomeration of nanoparticles. Furthermore, dynamic light scattering (DLS), zeta potential and nanoparticle tracking analysis (NTA) demonstrated that SPM were dissociated in water, forming nanoparticles smaller than 200 nm, which can also contribute to water pollution. This study highlights that SePM contamination may be substantially higher than expected under that allowed in atmospheric regulatory frameworks, thereby extending their negative effect to water bodies upon settling, which is an underexplored area of our knowledge. We therefore provide important insights for future investigations on safety regulations involving SePM in the environment, indicating the need to revise the role of SePM, not solely associated with air pollution but also considering their deleterious effects on water resources.

2.
J Hazard Mater ; 408: 124424, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33183835

ABSTRACT

Emerging metallic contaminants (EMCs) are of concern due their presence in aquatic ecosystems and the lack of environmental regulations in several countries. This study verifies the presence of EMCs in two neotropical mangrove estuarine ecosystems (Espírito Santo Brazil) by evaluating abiotic and biotic matrices across six trophic levels (plankton, oyster, shrimp, mangrove trees, crabs and fish) and hence interrogates the trophic transfer of these elements and their possible input sources. Using the oyster Crassostrea rhizophorae as a biomonitor, ten EMCs (Bi, Ce, La, Nb, Sn, Ta, Ti, W, Y and Zr) were determined. Bi input was from iron export and pelletizing industries; Ce, La and Y inputs were mainly associated with solid waste from steel production, while Zr, Nb and Ti were related to atmospheric particulate matter emissions. EMCs were detected at various trophic levels, showing biomagnification for most of them in the Santa Cruz estuary but biodilution in Vitória Bay. These contrasting results between the estuaries could be attributed to different pollution degrees, needing further research to be fully understood. This is the first report demonstrating EMCs trophic pathways in situ, constituting an essential baseline for future research and safety regulations involving EMCs in the environment.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Brazil , Ecosystem , Environmental Monitoring , Estuaries , Fishes , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 658: 798-808, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30583175

ABSTRACT

Intracellular titanium dioxide nanoparticles (TiO2-NP) with rutile crystalline form and dimensions varying from 43 to 67 nm × 64 to 93 nm are reported for the first time as being sequestered from the environment. TiO2-NP were identified inside all organs/tissues (muscle, kidney, gonad, hepatopancreas and gill) in both the cytoplasm and nucleus of the neotropical fish Centropomus parallelus, captured in an area affected by metallurgical activity. Atmospheric particulate matter (PM) sampled in the same area showed the presence of TiO2-NP with the same rutile crystalline form and dimensions varying from 16 to 93 nm × 45 to 193 nm, thus indicating the smelting and iron processing industries as the most probable source of TiO2-NP. In any sample, chemical analyses identify and quantify Ti concentration and nanocrystallography identified the structure of TiO2-NP. The Ti concentration in the sediment and atmospheric PM varied between years and it was mirrored by the Ti concentration in the fish organs. The gill has a higher Ti concentration varying from 5.50 to 14.57 µg g-1 dry weight and the gonad was the organ with lowest Ti level, 0.25 to 0.87 µg g-1 dry weight. In the muscles, Ti concentration varied from 0.85 to 3.34 µg g-1 dry weight. This contamination may be likely to affect the surrounding biota and food uptake, including the humans living in the city close to the metallurgical complex. These findings emphasised the needs to improve methods to reduce PM (including nanoparticles) arising from human activities and to evaluate the toxicokinetic and effects of TiO2-NP in the biota and human health.


Subject(s)
Environmental Monitoring , Metal Nanoparticles , Perciformes/metabolism , Titanium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Biological Transport , Crystallography , Estuaries , Geologic Sediments/analysis , Metal Nanoparticles/analysis , Oxidation-Reduction , Tissue Distribution , Titanium/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL